The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving
  • Editorial Board

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Computing Conference 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future of Information and Communication Conference (FICC) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

A Rich Feature-based Kernel Approach for Drug- Drug Interaction Extraction

Author 1: ANASS RAIHANI
Author 2: NABIL LAACHFOUBI

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2017.080445

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 8 Issue 4, 2017.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Discovering drug-drug interactions (DDIs) is a crucial issue for both patient safety and health care cost control. Developing text mining techniques for identifying DDIs has attracted a great deal of attention in the last few years. Unfortunately, state-of-the-art results didn't exceed the threshold of 0.7 F1 score, which calls for more efforts. In this work, we propose a new feature-based kernel method to extract and classify DDIs. Our approach consists of two steps: identifying DDIs and assigning one of four different DDI types to the predicted drug pairs. We demonstrate that by using new groups of features non-linear kernels can achieve the best performance. When evaluated on the DDIExtraction 2013 challenge corpus, our system achieved an F1-score of 71.79%, as compared to 69.75% and 68.4% reported by the top two state-of-the-art systems.

Keywords: Drug–drug interaction; Feature-based approach; Nonlinear kernel; Biomedical informatics; Natural Language Processing

ANASS RAIHANI and NABIL LAACHFOUBI, “A Rich Feature-based Kernel Approach for Drug- Drug Interaction Extraction” International Journal of Advanced Computer Science and Applications(IJACSA), 8(4), 2017. http://dx.doi.org/10.14569/IJACSA.2017.080445

@article{RAIHANI2017,
title = {A Rich Feature-based Kernel Approach for Drug- Drug Interaction Extraction},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2017.080445},
url = {http://dx.doi.org/10.14569/IJACSA.2017.080445},
year = {2017},
publisher = {The Science and Information Organization},
volume = {8},
number = {4},
author = {ANASS RAIHANI and NABIL LAACHFOUBI}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2021

29-30 April 2021

  • Virtual

Computing Conference 2021

15-16 July 2021

  • London, United Kingdom

IntelliSys 2021

2-3 September 2021

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2021

28-29 October 2021

  • Vancouver, Canada
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© 2018 The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org