The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving
  • Editorial Board

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Computing Conference 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future of Information and Communication Conference (FICC) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Simplex Parallelization in a Fully Hybrid Hardware Platform

Author 1: Basilis Mamalis
Author 2: Marios Perlitis

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2017.080449

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 8 Issue 4, 2017.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The simplex method has been successfully used in solving linear programming (LP) problems for many years. Parallel approaches have also extensively been studied due to the intensive computations required, especially for the solution of large LP problems. Furthermore, the rapid proliferation of multicore CPU architectures as well as the computational power provided by the massive parallelism of modern GPUs have turned CPU / GPU collaboration models increasingly into focus over the last years for better performance. In this paper, a highly scalable implementation framework of the standard full tableau simplex method is first presented, over a hybrid parallel platform which consists of multiple multicore nodes interconnected via a high-speed communication network. The proposed approach is based on the combined use of MPI and OpenMP, adopting a suitable column-based distribution scheme for the simplex tableau. The parallelization framework is then extended in such a way that it can exploit concurrently the full power of the provided resources on a multicore single-node environment with a CUDA-enabled GPU (i.e. using the CPU cores and the GPU concurrently), based on a suitable hybrid multithreading/GPU offloading scheme with OpenMP and CUDA. The corresponding experimental results show that the hybrid MPI+OpenMP based parallelization scheme leads to particularly high speed-up and efficiency values, considerably better than in other competitive approaches, and scaling well even for very large / huge linear problems. Furthermore, the performance of the hybrid multithreading/GPU offloading scheme is clearly superior to both the OpenMP-only and the GPU-only based implementations in almost all cases, which validates the worth of using both resources concurrently. The most important, when it is used in combination with MPI in a multi-node (fully hybrid) environment, it leads to substantial improvements in the speedup achieved for large and very large LP problems.

Keywords: Parallel Processing; Linear Programming; Simplex Algorithm; MPI; OpenMP; CUDA

Basilis Mamalis and Marios Perlitis, “Simplex Parallelization in a Fully Hybrid Hardware Platform” International Journal of Advanced Computer Science and Applications(IJACSA), 8(4), 2017. http://dx.doi.org/10.14569/IJACSA.2017.080449

@article{Mamalis2017,
title = {Simplex Parallelization in a Fully Hybrid Hardware Platform},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2017.080449},
url = {http://dx.doi.org/10.14569/IJACSA.2017.080449},
year = {2017},
publisher = {The Science and Information Organization},
volume = {8},
number = {4},
author = {Basilis Mamalis and Marios Perlitis}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2021

29-30 April 2021

  • Virtual

Computing Conference 2021

15-16 July 2021

  • London, United Kingdom

IntelliSys 2021

2-3 September 2021

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2021

28-29 October 2021

  • Vancouver, Canada
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© 2018 The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org