The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2017.080462
PDF

DSP Real-Time Implementation of an Audio Compression Algorithm by using the Fast Hartley Transform

Author 1: Souha BOUSSELMI
Author 2: Noureddine ALOUI
Author 3: Adnen CHERIF

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 8 Issue 4, 2017.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: This paper presents a simulation and hardware implementation of a new audio compression scheme based on the fast Hartley transform in combination with a new modified run length encoding. The proposed algorithm consists of analyzing signals with fast Hartley Transform and then thresholding the ob-tained coefficients below a given threshold which are then encoded using a new approach of run length encoding. The thresholded coefficients are, finally, quantized and coded into binary stream. The experimental results show the ability of the fast Hartley transform to compress audio signals. Indeed, it concentrates the signal energy in a few coefficients and demonstrates the ability of the new approach of run length encoding to increase the compression factor. The results of the current work are compared with wavelet based compression by using objective assessments namely CR, SNR, PSNR and NRMSE. This study shows that the fast Hartley transform is more appropriate than wavelets one since it offers a higher compression ratio and a better speech quality. In addition, we have tested the audio compression system on DSP processor TMS320C6416.This test shows that our system fits with the real-time requirements and ensures a low complexity. The perceptual quality is evaluated with the Mean Opinion Score (MOS).

Keywords: Speech compression; Fast Hartley transform (FHT); Discrete Wavelet Transform (DWT)

Souha BOUSSELMI, Noureddine ALOUI and Adnen CHERIF, “DSP Real-Time Implementation of an Audio Compression Algorithm by using the Fast Hartley Transform” International Journal of Advanced Computer Science and Applications(IJACSA), 8(4), 2017. http://dx.doi.org/10.14569/IJACSA.2017.080462

@article{BOUSSELMI2017,
title = {DSP Real-Time Implementation of an Audio Compression Algorithm by using the Fast Hartley Transform},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2017.080462},
url = {http://dx.doi.org/10.14569/IJACSA.2017.080462},
year = {2017},
publisher = {The Science and Information Organization},
volume = {8},
number = {4},
author = {Souha BOUSSELMI and Noureddine ALOUI and Adnen CHERIF}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org