The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2017.080540
PDF

Hybrid Texture based Classification of Breast Mammograms using Adaboost Classifier

Author 1: M. Arfan Jaffar

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 8 Issue 5, 2017.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Breast cancer is one of the most dangerous, leading and widespread cancers in the world especially in women. For breast analysis, digital mammography is the most suitable tool used to take mammograms for detection of cancer. It has been proved in the literature that if it can be detected at early and initial stages, then there are many chances to cure timely and efficiently. Therefore, initial screening of mammograms is the most important to detect cancer at initial stages. A radiologist is very expensive in the whole world wide and for a common person, it is very difficult to take opinion from more than one radiologist because it is a very sensitive disease. Thus, another solution is required that can be used as a second opinion to help the low cost solution to the patients. In this paper, a solution has been proposed to solve such type of problem to take mammograms and then detect cancer automatically in those images without any help of radiologist or medical specialist. So this solution can be adopted especially at the initial level. Proposed method first segment the portion of the image that contains these cancerous parts. After that, enhancement has been performed so that cancer can be clearly visible and identifiable. Texture features have been extracted to classify mammograms. An ensemble classifier AdaBoost has been used to classify those features by using the concept of intelligent experts. The standard dataset has been used for validation of the proposed method by using well-known quantitative measures. Proposed method has been compared with the existing method. Results show that proposed method has achieved 96.74% accuracy as well as 98.34% sensitivity.

Keywords: Features; Segmentation; Breast mammograms; Classification; Texture

M. Arfan Jaffar, “Hybrid Texture based Classification of Breast Mammograms using Adaboost Classifier” International Journal of Advanced Computer Science and Applications(IJACSA), 8(5), 2017. http://dx.doi.org/10.14569/IJACSA.2017.080540

@article{Jaffar2017,
title = {Hybrid Texture based Classification of Breast Mammograms using Adaboost Classifier},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2017.080540},
url = {http://dx.doi.org/10.14569/IJACSA.2017.080540},
year = {2017},
publisher = {The Science and Information Organization},
volume = {8},
number = {5},
author = {M. Arfan Jaffar}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org