The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Fuzzy Ontology based Approach for Flexible Association Rules Mining

Author 1: Alsayed M. H. Moawad
Author 2: Ahmed M. Gadallah
Author 3: Mohamed H. Kholief

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2017.080541

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 8 Issue 5, 2017.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Data mining is used for extracting related data. The association rules approach is one of the used methods for analyzing, discovering and extracting knowledge and mining the relationships among raw data. Commonly, it is important to understand and discover such knowledge directly from huge records of items stored in a relational database. This paper proposes an approach for generating human-like fuzzy association rules based on fuzzy ontology. It focuses on enhancing the process of extracting association rules from a huge database respecting a predefined domain fuzzy ontology. Commonly, association rules mining based on crisp ontology is found to be more flexible than classical ones as it considers the relationships between concepts or items. Yet, crisp ontology suffers from the problem of information losing resulted from the rigid boundaries of crisp relationships, which are approximated to be 0 or 1, between concepts. In contrast, the smooth boundaries of fuzzy sets make it able to represent partial relationships that range from 0 to 1 between concepts in an ontology in a more flexible human-like manner. Consequently, generating fuzzy association rules based on fuzzy ontology makes it more human-like and reliable compared with other previous ones. An illustrative case study, on two different data sets, shows the added value of the proposed approach compared with some other recent approaches.

Keywords: Fuzzy Ontology; Crisp Ontology; Data Mining; Fuzzy Association Rule

Alsayed M. H. Moawad, Ahmed M. Gadallah and Mohamed H. Kholief, “Fuzzy Ontology based Approach for Flexible Association Rules Mining” International Journal of Advanced Computer Science and Applications(IJACSA), 8(5), 2017. http://dx.doi.org/10.14569/IJACSA.2017.080541

@article{Moawad2017,
title = {Fuzzy Ontology based Approach for Flexible Association Rules Mining},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2017.080541},
url = {http://dx.doi.org/10.14569/IJACSA.2017.080541},
year = {2017},
publisher = {The Science and Information Organization},
volume = {8},
number = {5},
author = {Alsayed M. H. Moawad and Ahmed M. Gadallah and Mohamed H. Kholief}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org