The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Predictive Approach towards Software Effort Estimation using Evolutionary Support Vector Machine

Author 1: Tahira Mahboob
Author 2: Sabheen Gull
Author 3: Sidrish Ehsan
Author 4: Bushra Sikandar

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2017.080554

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 8 Issue 5, 2017.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The project effort measurement is one of the most important estimates done in project management domain. This measure is done in advance using some traditional methods like Function Point analysis, Use case analysis, PERT analysis, Analogous, Poker, etc. Classical models have limitations that they are burdensome to implement, especially when there are LOC (lines of code) or objects’ count required in measurement. Sometimes historical information regarding a project is also considered to estimate the projects’ effort. But these estimates are then needed to be adjusted. The idea proposed in this research is to determine what factors regarding a project are directly related to the effort estimation. Other than that a model is proposed to predict the effort using minimum number of parameters in software project development.

Keywords: Correlation coefficient; Decision tree; Effort Estimation; Evolutionary Support Vector Machine; Software project management

Tahira Mahboob, Sabheen Gull, Sidrish Ehsan and Bushra Sikandar, “Predictive Approach towards Software Effort Estimation using Evolutionary Support Vector Machine” International Journal of Advanced Computer Science and Applications(IJACSA), 8(5), 2017. http://dx.doi.org/10.14569/IJACSA.2017.080554

@article{Mahboob2017,
title = {Predictive Approach towards Software Effort Estimation using Evolutionary Support Vector Machine},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2017.080554},
url = {http://dx.doi.org/10.14569/IJACSA.2017.080554},
year = {2017},
publisher = {The Science and Information Organization},
volume = {8},
number = {5},
author = {Tahira Mahboob and Sabheen Gull and Sidrish Ehsan and Bushra Sikandar}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org