The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

An Investigation into the Suitability of k-Nearest Neighbour (k-NN) for Software Effort Estimation

Author 1: Razak Olu-Ajayi

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2017.080628

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 8 Issue 6, 2017.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Software effort estimation is an increasingly significant field, due to the overwhelming role of software in today’s global market. Effort estimation involves forecasting the effort in person-months or hours required for developing a software. It is vital to ideal planning and paramount for controlling the software development process. However, there is presently no optimal method to accurately estimate the effort required to develop a software system. Inaccurate estimation leads to poor use of resources and perhaps failure of the software project. Effort estimation also plays a key role in deducing cost of a software project. Software cost estimation includes the generation of the effort estimates and project duration to predict cost required to develop software project. Thus, effort is very essential and there is always need to enhance the accuracy as much as possible. This study evaluates and compares the potential of Constructive COst MOdel II (COCOMO II) and k-Nearest Neighbor (k-NN) on software project dataset. By the analysis of results received from each method, it may be concluded that the proposed method k-NN yields better performance over the other technique utilized in this study.

Keywords: Software effort estimation; machine learning; k-Nearest Neighbor; Constructive COst MOdel II

Razak Olu-Ajayi, “An Investigation into the Suitability of k-Nearest Neighbour (k-NN) for Software Effort Estimation” International Journal of Advanced Computer Science and Applications(IJACSA), 8(6), 2017. http://dx.doi.org/10.14569/IJACSA.2017.080628

@article{Olu-Ajayi2017,
title = {An Investigation into the Suitability of k-Nearest Neighbour (k-NN) for Software Effort Estimation},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2017.080628},
url = {http://dx.doi.org/10.14569/IJACSA.2017.080628},
year = {2017},
publisher = {The Science and Information Organization},
volume = {8},
number = {6},
author = {Razak Olu-Ajayi}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org