The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Network Packet Classification using Neural Network based on Training Function and Hidden Layer Neuron Number Variation

Author 1: Imam Riadi
Author 2: Arif Wirawan Muhammad
Author 3: Sunardi

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2017.080631

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 8 Issue 6, 2017.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Distributed denial of service (DDoS) is a structured network attack coming from various sources and fused to form a large packet stream. DDoS packet stream pattern behaves as normal packet stream pattern and very difficult to distinguish between DDoS and normal packet stream. Network packet classification is one of the network defense system in order to avoid DDoS attacks. Artificial Neural Network (ANN) can be used as an effective tool for network packet classification with the appropriate combination of numbers hidden layer neuron and training functions. This study found the best classification accuracy, 99.6% was given by ANN with hidden layer neuron numbers stated by half of input neuron numbers and twice of input neuron numbers but the number of hidden layers neuron by twice of input neuron numbers gives stable accuracy on all training function. ANN with Quasi-Newton training function doesn’t much affected by variation on hidden layer neuron numbers otherwise ANN with Scaled-Conjugate and Resilient-Propagation training function.

Keywords: Classification; DDoS; neural; network; training; function; hidden; layer

Imam Riadi, Arif Wirawan Muhammad and Sunardi, “Network Packet Classification using Neural Network based on Training Function and Hidden Layer Neuron Number Variation” International Journal of Advanced Computer Science and Applications(IJACSA), 8(6), 2017. http://dx.doi.org/10.14569/IJACSA.2017.080631

@article{Riadi2017,
title = {Network Packet Classification using Neural Network based on Training Function and Hidden Layer Neuron Number Variation},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2017.080631},
url = {http://dx.doi.org/10.14569/IJACSA.2017.080631},
year = {2017},
publisher = {The Science and Information Organization},
volume = {8},
number = {6},
author = {Imam Riadi and Arif Wirawan Muhammad and Sunardi}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org