The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Reducing Dimensionality in Text Mining using Conjugate Gradients and Hybrid Cholesky Decomposition

Author 1: Jasem M. Alostad

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2017.080716

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 8 Issue 7, 2017.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Generally, data mining in larger datasets consists of certain limitations in identifying the relevant datasets for the given queries. The limitations include: lack of interaction in the required objective space, inability to handle the data sets or discrete variables in datasets, especially in the presence of missing variables and inability to classify the records as per the given query, and finally poor generation of explicit knowledge for a query increases the dimensionality of the data. Hence, this paper aims at resolving the problems with increasing data dimensionality in datasets using modified non-integer matrix factorization (NMF). Further, the increased dimensionality arising due to non-orthogonally of NMF is resolved with Cholesky decomposition (cdNMF). Initially, the structuring of datasets is carried out to form a well-defined geometric structure. Further, the complex conjugate values are extracted and conjugate gradient algorithm is applied to reduce the sparse matrix from the data vector. The cdNMF is used to extract the feature vector from the dataset and the data vector is linearly mapped from upper triangular matrix obtained from the Cholesky decomposition. The experiment is validated against accuracy and normalized mutual information (NMI) metrics over three text databases of varied patterns. Further, the results prove that the proposed technique fits well with larger instances in finding the documents as per the query, than NMF, neighborhood preserving: nonnegative matrix factorization (NPNMF), multiple manifolds non-negative matrix factorization (MMNMF), robust non-negative matrix factorization (RNMF), graph regularized non-negative matrix factorization (GNMF), hierarchical non-negative matrix factorization (HNMF) and cdNMF.

Keywords: Data mining; non-integer matrix factorization; Cholesky decomposition; conjugate gradient algorithm

Jasem M. Alostad, “Reducing Dimensionality in Text Mining using Conjugate Gradients and Hybrid Cholesky Decomposition” International Journal of Advanced Computer Science and Applications(IJACSA), 8(7), 2017. http://dx.doi.org/10.14569/IJACSA.2017.080716

@article{Alostad2017,
title = {Reducing Dimensionality in Text Mining using Conjugate Gradients and Hybrid Cholesky Decomposition},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2017.080716},
url = {http://dx.doi.org/10.14569/IJACSA.2017.080716},
year = {2017},
publisher = {The Science and Information Organization},
volume = {8},
number = {7},
author = {Jasem M. Alostad}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org