The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2017.080746
PDF

Intelligent Diagnostic System for Nuclei Structure Classification of Thyroid Cancerous and Non-Cancerous Tissues

Author 1: Jamil Ahmed Chandio
Author 2: M. Abdul Rehman Soomrani

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 8 Issue 7, 2017.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Recently, image mining has opened new bottlenecks in the field of biomedical discoveries and machine leaning techniques have brought significant revolution in medical diagnosis. Especially, classification problem of human cancerous tissues would assume to be one of the really challenging problems since it requires very high optimized algorithms to select the appropriate features from histopathological images of well-differentiated thyroid cancers. For instance prediction of initial changes in neoplasm such as hidden patterns of nuclei overlapping sequences, variations in nuclei structures, distortion in chromatin distributions and identification of other micro- architectural behaviors would provide more meticulous assistance to doctors in early diagnosis of cancer. In-order to mitigate all above stated problems this paper proposes a novel methodology so called “Intelligent Diagnostic System for Nuclei Structural Classification of Thyroid Cancerous and Non-Cancerous Tissues” which classifies nuclei structures and cancerous behaviors from medical images by using proposed algorithm Auto_Tissue_Analysis. Overall methodology of approach is comprised of four layers. In first layer noise reduction techniques are used. In second layer feature selection techniques are used. In third layer decision model is constructed by using random forest (tree based) algorithm. Finally result visualization and performance evaluation is done by using confusion matrix, precision and recall measures. The overall classification accuracy is measured about 74% with 10-k fold cross validation.

Keywords: Machine learning; decision support system; clustering; classification; cancer cells

Jamil Ahmed Chandio and M. Abdul Rehman Soomrani, “Intelligent Diagnostic System for Nuclei Structure Classification of Thyroid Cancerous and Non-Cancerous Tissues” International Journal of Advanced Computer Science and Applications(IJACSA), 8(7), 2017. http://dx.doi.org/10.14569/IJACSA.2017.080746

@article{Chandio2017,
title = {Intelligent Diagnostic System for Nuclei Structure Classification of Thyroid Cancerous and Non-Cancerous Tissues},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2017.080746},
url = {http://dx.doi.org/10.14569/IJACSA.2017.080746},
year = {2017},
publisher = {The Science and Information Organization},
volume = {8},
number = {7},
author = {Jamil Ahmed Chandio and M. Abdul Rehman Soomrani}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org