The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2017.080749
PDF

2.5 D Facial Analysis via Bio-Inspired Active Appearance Model and Support Vector Machine for Forensic Application

Author 1: Siti Norul Huda Sheikh Abdullah
Author 2: Mohammed Hasan Abdulameer
Author 3: Nazri Ahmad Zamani
Author 4: Fasly Rahim
Author 5: Khairul Akram Zainol Ariffin
Author 6: Zulaiha Othman
Author 7: Mohd Zakree Ahmad Nazri

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 8 Issue 7, 2017.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In this paper, a fully automatic 2.5D facial technique for forensic applications is presented. Feature extraction and classification are fundamental processes in any face identification technique. Two methods for feature extraction and classification are proposed in this paper subsequently. Active Appearance Model (AAM) is one of the familiar feature extraction methods but it has weaknesses in its fitting process. Artificial bee colony (ABC) is a fitting solution due to its fast search ability. However, it has drawback in its neighborhood search. On the other hand, PSO-SVM is one of the most recent classification approaches. However, its performance is weakened by the usage of random values for calculating velocity. To solve the problems, this research is conducted in three phases as follows: the first phase is to propose Maximum Resource Neighborhood Search (MRNS) which is an enhanced ABC algorithm to improve the fitting process in current AAM. Then, Adaptively Accelerated PSO-SVM (AAPSO-SVM) classification technique is proposed, by which the selection of the acceleration coefficient values is done using particle fitness values in finding the optimal parameters of SVM. The proposed methods AAM-MRNS, AAPSO-SVM and the whole 2.5D facial technique are evaluated by comparing them with the other methods using new 2.5D face image data set. Further, a sample of Malaysian criminal real case of CCTV facial investigation suspect has been tested in the proposed technique. Results from the experiment shows that the proposed techniques outperformed the conventional techniques. Furthermore, the 2.5D facial technique is able to recognize a sample of Malaysian criminal case called “Tepuk Bahu” using CCTV facial investigation.

Keywords: Face recognition; active appearance model; ant bee colony; particle swarm optimization; support vector machine

Siti Norul Huda Sheikh Abdullah, Mohammed Hasan Abdulameer, Nazri Ahmad Zamani, Fasly Rahim, Khairul Akram Zainol Ariffin, Zulaiha Othman and Mohd Zakree Ahmad Nazri, “2.5 D Facial Analysis via Bio-Inspired Active Appearance Model and Support Vector Machine for Forensic Application” International Journal of Advanced Computer Science and Applications(IJACSA), 8(7), 2017. http://dx.doi.org/10.14569/IJACSA.2017.080749

@article{Abdullah2017,
title = {2.5 D Facial Analysis via Bio-Inspired Active Appearance Model and Support Vector Machine for Forensic Application},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2017.080749},
url = {http://dx.doi.org/10.14569/IJACSA.2017.080749},
year = {2017},
publisher = {The Science and Information Organization},
volume = {8},
number = {7},
author = {Siti Norul Huda Sheikh Abdullah and Mohammed Hasan Abdulameer and Nazri Ahmad Zamani and Fasly Rahim and Khairul Akram Zainol Ariffin and Zulaiha Othman and Mohd Zakree Ahmad Nazri}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org