The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Call for Papers
  • Proposals
  • Guest Editors

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Efficient Feature Selection for Product Labeling over Unstructured Data

Author 1: Zeki YETGIN
Author 2: Abdullah ELEWI
Author 3: Furkan GÖZÜKARA

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2017.080750

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 8 Issue 7, 2017.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The paper introduces a novel feature selection algorithm for labeling identical products collected from online web resources. Product labeling is important for clustering similar or same products. Products blindly crawled over the web sources, such as online sellers, have unstructured data due to having features expressed in different representations and formats. Such data result in feature vectors whose representation is unknown and non-uniform in length. Thus, product labeling, as a challenging problem, needs efficient selection of features that best describe the products. In this paper, an efficient feature selection algorithm is proposed for product labeling problem. Hierarchical clustering is used with the state of the art similarity metrics to assess the performance of the proposed algorithm. The results show that the proposed algorithm increases the performance of product labeling significantly. Furthermore, the method can be applied to any clustering algorithm that works on unstructured data.

Keywords: Product labeling; product clustering; feature selection; similarity metrics; hierarchical clustering

Zeki YETGIN, Abdullah ELEWI and Furkan GÖZÜKARA, “Efficient Feature Selection for Product Labeling over Unstructured Data” International Journal of Advanced Computer Science and Applications(IJACSA), 8(7), 2017. http://dx.doi.org/10.14569/IJACSA.2017.080750

@article{YETGIN2017,
title = {Efficient Feature Selection for Product Labeling over Unstructured Data},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2017.080750},
url = {http://dx.doi.org/10.14569/IJACSA.2017.080750},
year = {2017},
publisher = {The Science and Information Organization},
volume = {8},
number = {7},
author = {Zeki YETGIN and Abdullah ELEWI and Furkan GÖZÜKARA}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Hybrid | San Francisco

Computing Conference 2023

13-14 July 2023

  • Hybrid | London, UK

IntelliSys 2022

1-2 September 2022

  • Hybrid / Amsterdam

Future Technologies Conference (FTC) 2022

20-21 October 2022

  • Hybrid / Vancouver
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org