The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2017.080802
PDF

A Comparison between Chemical Reaction Optimization and Genetic Algorithms for Max Flow Problem

Author 1: Mohammad Y. Khanafseh
Author 2: Ola M. Surakhi
Author 3: Ahmad Sharieh
Author 4: Azzam Sleit

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 8 Issue 8, 2017.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: This paper presents a comparison between the performance of Chemical Reaction Optimization algorithm and Genetic algorithm in solving maximum flow problem with the performance of Ford-Fulkerson algorithm in that. The algorithms have been implemented sequentially using JAVA programming language, and executed to find maximum flow problem using different network size. Ford-Fulkerson algorithm which is based on the idea of finding augmenting path is the most popular algorithm used to find maximum flow value but its time complexity is high. The main aim of this study is to determine which algorithm will give results closer to the Ford-Fulkerson results in less time and with the same degree of accuracy. The results showed that both algorithms can solve Max Flow problem with accuracy results close to Ford Fulkerson results, with a better performance achieved when using the genetic algorithm in term of time and accuracy.

Keywords: Chemical reaction optimization; Ford-Fulkerson algorithm; genetic algorithm; maximum flow problem

Mohammad Y. Khanafseh, Ola M. Surakhi, Ahmad Sharieh and Azzam Sleit, “A Comparison between Chemical Reaction Optimization and Genetic Algorithms for Max Flow Problem” International Journal of Advanced Computer Science and Applications(IJACSA), 8(8), 2017. http://dx.doi.org/10.14569/IJACSA.2017.080802

@article{Khanafseh2017,
title = {A Comparison between Chemical Reaction Optimization and Genetic Algorithms for Max Flow Problem},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2017.080802},
url = {http://dx.doi.org/10.14569/IJACSA.2017.080802},
year = {2017},
publisher = {The Science and Information Organization},
volume = {8},
number = {8},
author = {Mohammad Y. Khanafseh and Ola M. Surakhi and Ahmad Sharieh and Azzam Sleit}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org