The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2017.080843
PDF

A Hybrid Curvelet Transform and Genetic Algorithm for Image Steganography

Author 1: Heba Mostafa Mohamed
Author 2: Ahmed Fouad Ali
Author 3: Ghada Sami Altaweel

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 8 Issue 8, 2017.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In this paper, we present a new hybrid image steganography algorithm by combining two famous techniques which are curvelet transform and genetic algorithm GA. The proposed algorithm is called Hybrid Curvelet Transform and Genetic Algorithm for image steganography (HCTGA). Curvelet transform is a multiscale geometric analysis tool, its main advantage is that it can solve the important problems efficiently and other transforms are not that ideal. Genetic algorithm is a famous optimization algorithm with the aim of finding the best solutions to a given computational problem that maximizes or minimizes a particular function. In the proposed algorithm the cover and secret images are passed through a preprocessing process by applying four different filters to them in order to remove the noise and achieve a better quality to both images before the hiding process. Then the curvelet transform is applied to the cover image to find the curvelet frequencies of the image, and the secret image is hided at the Least Significant Bits (LSB) of the curvelet frequencies of the cover image to reconstruct the stego image. Finally genetic algorithm operations are employed to find different scenarios for the hiding process by rearranging the hiding bits and finally choose the best scenario that can reach a better image quality and a higher Peak Signal to Noise Ratio (PSNR) results.

Keywords: Image steganography; curvelet transform; least significant bits; genetic algorithm; Peak Signal to Noise Ratio (PSNR)

Heba Mostafa Mohamed, Ahmed Fouad Ali and Ghada Sami Altaweel, “A Hybrid Curvelet Transform and Genetic Algorithm for Image Steganography” International Journal of Advanced Computer Science and Applications(IJACSA), 8(8), 2017. http://dx.doi.org/10.14569/IJACSA.2017.080843

@article{Mohamed2017,
title = {A Hybrid Curvelet Transform and Genetic Algorithm for Image Steganography},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2017.080843},
url = {http://dx.doi.org/10.14569/IJACSA.2017.080843},
year = {2017},
publisher = {The Science and Information Organization},
volume = {8},
number = {8},
author = {Heba Mostafa Mohamed and Ahmed Fouad Ali and Ghada Sami Altaweel}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org