The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2017.080901
PDF

The Analysis of Anticancer Drug Sensitivity of Lung Cancer Cell Lines by using Machine Learning Clustering Techniques

Author 1: Chandi S. Wanigasooriya
Author 2: Malka N. Halgamuge
Author 3: Azeem Mohammad

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 8 Issue 9, 2017.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Lung cancer is the commonest type of cancer with the highest fatality rate worldwide. There is continued research that experiments on drug development for lung cancer patients by assessing their responses to chemotherapeutic treatments to select novel targets for improved therapies. This study aims to analyze the anticancer drug sensitivity in human lung cancer cell lines by using machine learning techniques. The data for this analysis is extracted from the National Cancer Institute (NCI). This experiment uses 408,291 human small molecule lung cancer cell lines to conclude. The values are drawn from describing the raw viability values for 91 human lung cancer cell lines treated with 354 different chemical compounds and 432 concentration points tested in each replicate experiments. Our analysis demonstrated the data from a considerable amount of cell lines clustered by using Simple K-means, Filtered clustering and by calculating sensitive drugs for each lung cancer cell line. Additionally, our analysis also demonstrated that the Neopeltolide, Parbendazole, Phloretin and Piperlongumine anti-drug chemical compounds were more sensitive for all 91 cell lines under different concentrations (p-value < 0.001). Our findings indicated that Simple K-means and Filtered clustering methods are completely similar to each other. The available literature on lung cancer cell line data observed a significant relationship between lung cancer and anticancer drugs. Our analysis of the reported experimental results demonstrated that some compounds are more sensitive than other compounds; Phloretin was the most sensitive compound for all lung cancer cell lines which were nearly about 59% out of 91 cell lines. Hence, our observation provides the methodology on how anticancer drug sensitivity of lung cancer cell lines can be analyzed by using machine learning techniques, such as clustering algorithms. This inquiry is a useful reference for researchers who are experimenting on drug developments for the lung cancer in the future.

Keywords: Data analysis; clustering; filtered clustering; simple k-means clustering; cancer; lung cancer; cancer cell lines; drug sensitivity

Chandi S. Wanigasooriya, Malka N. Halgamuge and Azeem Mohammad, “The Analysis of Anticancer Drug Sensitivity of Lung Cancer Cell Lines by using Machine Learning Clustering Techniques” International Journal of Advanced Computer Science and Applications(IJACSA), 8(9), 2017. http://dx.doi.org/10.14569/IJACSA.2017.080901

@article{Wanigasooriya2017,
title = {The Analysis of Anticancer Drug Sensitivity of Lung Cancer Cell Lines by using Machine Learning Clustering Techniques},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2017.080901},
url = {http://dx.doi.org/10.14569/IJACSA.2017.080901},
year = {2017},
publisher = {The Science and Information Organization},
volume = {8},
number = {9},
author = {Chandi S. Wanigasooriya and Malka N. Halgamuge and Azeem Mohammad}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org