The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2017.080922
PDF

A New Strategy in Trust-Based Recommender System using K-Means Clustering

Author 1: Naeem Shahabi Sani
Author 2: Ferial Najian Tabriz

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 8 Issue 9, 2017.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Recommender systems are among the most important parts of online systems, including online stores such as Amazon, Netflix that have become very popular in the recent years. These systems lead users to finding desired information and goods in electronic environments. Recommender systems are one of the main tools to overcome the problem of information overload. Collaborative filtering (CF) is one of the best approaches for recommender systems and are spreading as a dominant approach. However, they have the problem of cold-start and data sparsity. Trust-based approaches try to create a neighborhood and network of trusted users that demonstrate users’ trust in each other’s opinions. As such, these systems recommend items based on users’ relationships. In the proposed method, we try to resolve the problems of low coverage rate and high RMSE rate in trust-based recommender systems using k-means clustering and ant colony algorithm (TBRSK). For clustering data, the k-means method has been used on MovieLens and Epinion datasets and the rating matrix is calculated to have the least overlapping.

Keywords: Recommendation systems; collaborative filtering; trust-based recommendation system; k-means; ant colony

Naeem Shahabi Sani and Ferial Najian Tabriz, “A New Strategy in Trust-Based Recommender System using K-Means Clustering” International Journal of Advanced Computer Science and Applications(IJACSA), 8(9), 2017. http://dx.doi.org/10.14569/IJACSA.2017.080922

@article{Sani2017,
title = {A New Strategy in Trust-Based Recommender System using K-Means Clustering},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2017.080922},
url = {http://dx.doi.org/10.14569/IJACSA.2017.080922},
year = {2017},
publisher = {The Science and Information Organization},
volume = {8},
number = {9},
author = {Naeem Shahabi Sani and Ferial Najian Tabriz}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org