The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2017.080959
PDF

A Proposed Approach for Image Compression based on Wavelet Transform and Neural Network

Author 1: Houda Chakib
Author 2: Brahim Minaoui
Author 3: Mohamed Fakir
Author 4: Abderrahim Salhi
Author 5: Imad Badi

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 8 Issue 9, 2017.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Over the last years, wavelet theory has been used with great success in a wide range of applications as signal de-noising and image compression. An ideal image compression system must yield high-quality compressed image with high compression ratio. This paper attempts to find the most useful wavelet function to compress an image among the existing members of wavelet families. Our idea is that a backpropagation neural network is trained to select the suitable wavelet function between the two families: orthogonal (Haar) and biorthogonal (bior4.4), to be used to compress an image efficiently and accurately with an ideal and optimum compression ratio. The simulation results indicated that the proposed technique can achieve good compressed images in terms of peak signal to noise ratio (PSNR) and compression ratio (t) in comparison with random selection of the mother wavelet.

Keywords: Haar wavelet transform; biorthogonal wavelet; backpropagation neural network; scaled conjugate gradient algorithm

Houda Chakib, Brahim Minaoui, Mohamed Fakir, Abderrahim Salhi and Imad Badi, “A Proposed Approach for Image Compression based on Wavelet Transform and Neural Network” International Journal of Advanced Computer Science and Applications(IJACSA), 8(9), 2017. http://dx.doi.org/10.14569/IJACSA.2017.080959

@article{Chakib2017,
title = {A Proposed Approach for Image Compression based on Wavelet Transform and Neural Network},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2017.080959},
url = {http://dx.doi.org/10.14569/IJACSA.2017.080959},
year = {2017},
publisher = {The Science and Information Organization},
volume = {8},
number = {9},
author = {Houda Chakib and Brahim Minaoui and Mohamed Fakir and Abderrahim Salhi and Imad Badi}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

16-17 April 2026

  • Berlin, Germany

Healthcare Conference 2026

21-22 May 2025

  • Amsterdam, The Netherlands

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org