The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2018.090101
PDF

Novel Methods for Resolving False Positives during the Detection of Fraudulent Activities on Stock Market Financial Discussion Boards

Author 1: Pei Shyuan Lee
Author 2: Majdi Owda
Author 3: Keeley Crockett

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue 1, 2018.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Financial discussion boards (FDBs) have been widely used for a variety of financial knowledge exchange activities through the posting of comments. Popular public FDBs are prone to being used as a medium to spread false financial information due to larger audience groups. Although online forums are usually integrated with anti-spam tools, such as Akismet, moderation of posted content heavily relies on manual tasks. Unfortunately, the daily comments volume received on popular FDBs realistically prevents human moderators to watch closely and moderate possibly fraudulent content, not to mention moderators are not usually assigned with such task. Due to the absence of useful tools, it is extremely time consuming and expensive to manually read and determine whether each comment is potentially fraudulent. This paper presents novel forward and backward analysis methodologies implemented in an Information Extraction (IE) prototype system named FDBs Miner (FDBM). The methodologies aim to detect potentially illegal Pump and Dump comments on FDBs with the integration of per-minute share prices in the detection process. This can possibly reduce false positives during the detection as it categorises the potentially illegal comments into different risk levels for investigation purposes. The proposed system extracts company’s ticker symbols (i.e. unique symbol that represents and identifies each listed company on stock market), comments and share prices from FDBs based in the UK. The forward analysis methodology flags the potentially Pump and Dump comments using a predefined keywords template and labels the flagged comments with price hike thresholds. Subsequently, the backward analysis methodology employs a moving average technique to determine price abnormalities and backward analyse the flagged comments. The first detection stage in forward analysis found 9.82% of potentially illegal comments. It is unrealistic and unaffordable for human moderators or financial surveillance authorities to read these comments on a daily basis. Hence, by integrating share prices to perform backward analysis can categorise the flagged comments into different risk levels. It helps relevant authorities to prioritise and investigate into the higher risk flagged comments, which could potentially indicate a real Pump and Dump crime happening on FDBs when the system is being used in real time.

Keywords: Financial discussion boards; financial crimes; pump and dump; text mining; information extraction

Pei Shyuan Lee, Majdi Owda and Keeley Crockett, “Novel Methods for Resolving False Positives during the Detection of Fraudulent Activities on Stock Market Financial Discussion Boards” International Journal of Advanced Computer Science and Applications(IJACSA), 9(1), 2018. http://dx.doi.org/10.14569/IJACSA.2018.090101

@article{Lee2018,
title = {Novel Methods for Resolving False Positives during the Detection of Fraudulent Activities on Stock Market Financial Discussion Boards},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.090101},
url = {http://dx.doi.org/10.14569/IJACSA.2018.090101},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {1},
author = {Pei Shyuan Lee and Majdi Owda and Keeley Crockett}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org