The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2018.090103
PDF

Credit Card Fraud Detection using Deep Learning based on Auto-Encoder and Restricted Boltzmann Machine

Author 1: Apapan Pumsirirat
Author 2: Liu Yan

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue 1, 2018.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Frauds have no constant patterns. They always change their behavior; so, we need to use an unsupervised learning. Fraudsters learn about new technology that allows them to execute frauds through online transactions. Fraudsters assume the regular behavior of consumers, and fraud patterns change fast. So, fraud detection systems need to detect online transactions by using unsupervised learning, because some fraudsters commit frauds once through online mediums and then switch to other techniques. This paper aims to 1) focus on fraud cases that cannot be detected based on previous history or supervised learning, 2) create a model of deep Auto-encoder and restricted Boltzmann machine (RBM) that can reconstruct normal transactions to find anomalies from normal patterns. The proposed deep learning based on auto-encoder (AE) is an unsupervised learning algorithm that applies backpropagation by setting the inputs equal to the outputs. The RBM has two layers, the input layer (visible) and hidden layer. In this research, we use the Tensorflow library from Google to implement AE, RBM, and H2O by using deep learning. The results show the mean squared error, root mean squared error, and area under curve.

Keywords: Credit card; fraud detection; deep learning; unsupervised learning; auto-encoder; restricted Boltzmann machine; Tensorflow

Apapan Pumsirirat and Liu Yan, “Credit Card Fraud Detection using Deep Learning based on Auto-Encoder and Restricted Boltzmann Machine” International Journal of Advanced Computer Science and Applications(IJACSA), 9(1), 2018. http://dx.doi.org/10.14569/IJACSA.2018.090103

@article{Pumsirirat2018,
title = {Credit Card Fraud Detection using Deep Learning based on Auto-Encoder and Restricted Boltzmann Machine},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.090103},
url = {http://dx.doi.org/10.14569/IJACSA.2018.090103},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {1},
author = {Apapan Pumsirirat and Liu Yan}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Computer Vision Conference
  • Healthcare Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org