The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2018.090138
PDF

Social Network Link Prediction using Semantics Deep Learning

Author 1: Maria Ijaz
Author 2: Javed Ferzund
Author 3: Muhammad Asif Suryani
Author 4: Anam Sardar

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue 1, 2018.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Currently, social networks have brought about an enormous number of users connecting to such systems over a couple of years, whereas the link mining is a key research track in this area. It has pulled the consideration of several analysts as a powerful system to be utilized as a part of social networks study to understand the relations between nodes in social circles. Numerous data sets of today’s interest are most appropriately called as a collection of interrelated linked objects. The main challenge faced by analysts is to tackle the problem of structured data sets among the objects. For this purpose, we design a new comprehensive model that involves link mining techniques with semantics to perform link mining on structured data sets. The past work, to our knowledge, has investigated on these structured datasets using this technique. For this purpose, we extracted real-time data of posts using different tools from one of the famous SN platforms and check the society’s behavior against it. We have verified our model utilizing diverse classifiers and the derived outcomes inspiring.

Keywords: Link prediction system; post analysis; semantic similarity; data analysis; social network analysis; dictionary; co-similar links

Maria Ijaz, Javed Ferzund, Muhammad Asif Suryani and Anam Sardar, “Social Network Link Prediction using Semantics Deep Learning” International Journal of Advanced Computer Science and Applications(IJACSA), 9(1), 2018. http://dx.doi.org/10.14569/IJACSA.2018.090138

@article{Ijaz2018,
title = {Social Network Link Prediction using Semantics Deep Learning},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.090138},
url = {http://dx.doi.org/10.14569/IJACSA.2018.090138},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {1},
author = {Maria Ijaz and Javed Ferzund and Muhammad Asif Suryani and Anam Sardar}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org