The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2018.090104
PDF

Voice Detection in Traditionnal Tunisian Music using Audio Features and Supervised Learning Algorithms

Author 1: Wissem Ziadi
Author 2: Hamid Amiri

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue 1, 2018.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The research presented in this paper aims to automatically detect the singing voice in traditional Tunisian music, taking into account the main characteristics of the sound of the voice in this particular music style. This means creating the possibility to automatically identify instrumental and singing sounds. Therefore different methods for the automatic classification of sounds using supervised learning algorithms were compared and evaluated. The research is divided into four successive stages. First, the extraction of features vectors from the audio tracks (through calculation of the parameters of sound perception) followed by the selection and transformation process of relevant features for singing/instrumental discrimination. Then, using learning algorithms, the instrumental and vocal classes were modeled from a manually annotated database. Finally, the evaluation of the decision-making process (indexing) was applied on the test part of the database. The musical databases used for this study consists of extracts from the national sound archives of Centre of Mediterranean and Arabic Music (CMAM) and recordings made especially for this research. The possibility to index audio data (classify/segment) into vocal and instrumental recognition allows for the retrieval of content-based information of musical databases.

Keywords: Tunisian voice timbre; audio features extraction; singing voice detection; sung/instrumental discrimination; supervised learning algorithms

Wissem Ziadi and Hamid Amiri, “Voice Detection in Traditionnal Tunisian Music using Audio Features and Supervised Learning Algorithms” International Journal of Advanced Computer Science and Applications(IJACSA), 9(1), 2018. http://dx.doi.org/10.14569/IJACSA.2018.090104

@article{Ziadi2018,
title = {Voice Detection in Traditionnal Tunisian Music using Audio Features and Supervised Learning Algorithms},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.090104},
url = {http://dx.doi.org/10.14569/IJACSA.2018.090104},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {1},
author = {Wissem Ziadi and Hamid Amiri}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org