The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2018.090163
PDF

Prediction of Stroke using Data Mining Classification Techniques

Author 1: Ohoud Almadani
Author 2: Riyad Alshammari

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue 1, 2018.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Stroke is a neurological disease that occurs when a brain cells die as a result of oxygen and nutrient deficiency. Stroke detection within the first few hours improves the chances to prevent complications and improve health care and management of patients. In addition, significant effect of medications that were used as treatment for stroke would appear only if they were given within the first three hours since the beginning of stroke. A framework has been designed based on data mining techniques on Stroke data set that is obtained from Ministry of National Guards Health Affairs hospitals, Kingdom of Saudi Arabia. A data mining model was built with 95% accuracy. Furthermore, this study showed that patient with the following medical conditions, such as heart diseases (hypertension mainly), immunity diseases, diabetes militias, kidney diseases, hyperlipidemia, epilepsy, or blood (platelets) disorders has a higher probability to develop stroke.

Keywords: Stroke; data mining; classification

Ohoud Almadani and Riyad Alshammari, “Prediction of Stroke using Data Mining Classification Techniques” International Journal of Advanced Computer Science and Applications(IJACSA), 9(1), 2018. http://dx.doi.org/10.14569/IJACSA.2018.090163

@article{Almadani2018,
title = {Prediction of Stroke using Data Mining Classification Techniques},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.090163},
url = {http://dx.doi.org/10.14569/IJACSA.2018.090163},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {1},
author = {Ohoud Almadani and Riyad Alshammari}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org