The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2018.091027
PDF

Model Development for Predicting the Occurrence of Benign Laryngeal Lesions using Support Vector Machine: Focusing on South Korean Adults Living in Local Communities

Author 1: Haewon Byeon

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue 10, 2018.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The disease is a consequence of interactions between many complex risk factors, rather than a single cause. Therefore, it is necessary to develop a disease prediction model by using multiple risk factors instead of using a single risk factor. The objective of this study was to develop a model for predicting the occurrence of benign laryngeal lesions based on support vector machine (SVM) using ear, nose and throat (ENT) data from a national-level survey and to provide a basis for selecting high-risk groups and preventing a voice disorder. This study targeted 16,938 adults (≥19years) who participated in the ENT examination among the people who completed the Korea National Health and Nutrition Examination Survey from 2010 to 2012. This study compared the prediction power of the Gauss function, which was used for this study, with that of a linear algorithm, that of a polynomial algorithm, and that of a sigmoid algorithm. Moreover, four kernels were divided into C-SVM and Nu-SVM to compare the prediction accuracy of C-SVM with that of Nu-SVM. The ‘benign laryngeal lesion prediction model’ based on SVM could derive preventive factors and risk factors. The final prediction rate of this SVM using 479 support vectors was 97.306. The fitness results indicated that the difference between C-SVM and Nu-SVM was not large in the benign laryngeal lesion prediction model. In terms of kernel type, the prediction accuracy of Gauss kernel was the highest and the prediction accuracy of the sigmoid kernel was the lowest. The results of this study will provide an important basis for preventing and managing benign laryngeal lesions.

Keywords: Support vector machine; SVM; dysphonia; voice disorder; prediction model; risk factor; data mining

Haewon Byeon, “Model Development for Predicting the Occurrence of Benign Laryngeal Lesions using Support Vector Machine: Focusing on South Korean Adults Living in Local Communities” International Journal of Advanced Computer Science and Applications(IJACSA), 9(10), 2018. http://dx.doi.org/10.14569/IJACSA.2018.091027

@article{Byeon2018,
title = {Model Development for Predicting the Occurrence of Benign Laryngeal Lesions using Support Vector Machine: Focusing on South Korean Adults Living in Local Communities},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.091027},
url = {http://dx.doi.org/10.14569/IJACSA.2018.091027},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {10},
author = {Haewon Byeon}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org