The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2018.091031
PDF

Convolutional Neural Network Hyper-Parameters Optimization based on Genetic Algorithms

Author 1: Sehla Loussaief
Author 2: Afef Abdelkrim

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue 10, 2018.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In machine learning for computer vision based applications, Convolutional Neural Network (CNN) is the most widely used technique for image classification. Despite these deep neural networks efficiency, choosing their optimal architecture for a given task remains an open problem. In fact, CNNs performance depends on many hyper-parameters namely CNN depth, convolutional layer number, filters number and their respective sizes. Many CNN structures have been manually designed by researchers and then evaluated to verify their efficiency. In this paper, our contribution is to propose an innovative approach, labeled Enhanced Elite CNN Model Propagation (Enhanced E-CNN-MP), to automatically learn the optimal structure of a CNN. To traverse the large search space of candidate solutions our approach is based on Genetic Algorithms (GA). These meta-heuristic algorithms are well-known for non-deterministic problem resolution. Simulations demonstrate the ability of the designed approach to compute optimal CNN hyper-parameters in a given classification task. Classification accuracy of the designed CNN based on Enhanced E-CNN-MP method, exceed that of public CNN even with the use of the Transfer Learning technique. Our contribution advances the current state by offering to scientists, regardless of their field of research, the ability of designing optimal CNNs for any particular classification problem.

Keywords: Machine learning; computer vision; image classification; convolutional neural network; CNN hyper parameters; enhanced E-CNN-MP; genetic algorithms; learning accuracy

Sehla Loussaief and Afef Abdelkrim, “Convolutional Neural Network Hyper-Parameters Optimization based on Genetic Algorithms” International Journal of Advanced Computer Science and Applications(IJACSA), 9(10), 2018. http://dx.doi.org/10.14569/IJACSA.2018.091031

@article{Loussaief2018,
title = {Convolutional Neural Network Hyper-Parameters Optimization based on Genetic Algorithms},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.091031},
url = {http://dx.doi.org/10.14569/IJACSA.2018.091031},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {10},
author = {Sehla Loussaief and Afef Abdelkrim}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org