Future of Information and Communication Conference (FICC) 2025
28-29 April 2025
Publication Links
IJACSA
Special Issues
Future of Information and Communication Conference (FICC)
Computing Conference
Intelligent Systems Conference (IntelliSys)
Future Technologies Conference (FTC)
International Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue 10, 2018.
Abstract: In machine learning for computer vision based applications, Convolutional Neural Network (CNN) is the most widely used technique for image classification. Despite these deep neural networks efficiency, choosing their optimal architecture for a given task remains an open problem. In fact, CNNs performance depends on many hyper-parameters namely CNN depth, convolutional layer number, filters number and their respective sizes. Many CNN structures have been manually designed by researchers and then evaluated to verify their efficiency. In this paper, our contribution is to propose an innovative approach, labeled Enhanced Elite CNN Model Propagation (Enhanced E-CNN-MP), to automatically learn the optimal structure of a CNN. To traverse the large search space of candidate solutions our approach is based on Genetic Algorithms (GA). These meta-heuristic algorithms are well-known for non-deterministic problem resolution. Simulations demonstrate the ability of the designed approach to compute optimal CNN hyper-parameters in a given classification task. Classification accuracy of the designed CNN based on Enhanced E-CNN-MP method, exceed that of public CNN even with the use of the Transfer Learning technique. Our contribution advances the current state by offering to scientists, regardless of their field of research, the ability of designing optimal CNNs for any particular classification problem.
Sehla Loussaief and Afef Abdelkrim, “Convolutional Neural Network Hyper-Parameters Optimization based on Genetic Algorithms” International Journal of Advanced Computer Science and Applications(IJACSA), 9(10), 2018. http://dx.doi.org/10.14569/IJACSA.2018.091031
@article{Loussaief2018,
title = {Convolutional Neural Network Hyper-Parameters Optimization based on Genetic Algorithms},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.091031},
url = {http://dx.doi.org/10.14569/IJACSA.2018.091031},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {10},
author = {Sehla Loussaief and Afef Abdelkrim}
}
Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.