The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2018.091044
PDF

Missing Values Imputation using Similarity Matching Method for Brainprint Authentication

Author 1: Siaw-Hong Liew
Author 2: Yun-Huoy Choo
Author 3: Yin Fen Low

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue 10, 2018.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: This paper proposes a similarity matching imputation method to deal with the missing values in electroencephalogram (EEG) signals. EEG signals with rather high amplitude can be considered as noise, normally they will be removed. The occurrence of missing values after this artefact rejection process increases the complexity of computational modelling due to incomplete data input for model training. The fundamental concept of the proposed similarity matching imputation method is founded on the assumption that similar stimulation on a particular subject will acquire comparable EEG signals response over the related EEG channels. Hence, we replaced the missing values using the highest similarity amplitude measure across different trials in this study. Next, wavelet phase stability (WPS) was used to evaluate the performance of the proposed method since WPS portrays better signals information as compared to amplitude measure in this situation. The statistical paired sample t-test was used to validate the performance of the proposed similarity matching imputation method and the preceding mean substitute imputation method. The lower the value of mean difference indicates the better approximation of imputation data towards its original form. The proposed method is able to treat 9.75% more missing value trials, with significantly better imputation value, than the mean substitution method. Continuity of the current study will be focusing on evaluating the robustness of the proposed method in dealing with different rate of missing data.

Keywords: Similarity matching; data imputation; wavelet phase stability; missing values; artefact rejection

Siaw-Hong Liew, Yun-Huoy Choo and Yin Fen Low, “Missing Values Imputation using Similarity Matching Method for Brainprint Authentication” International Journal of Advanced Computer Science and Applications(IJACSA), 9(10), 2018. http://dx.doi.org/10.14569/IJACSA.2018.091044

@article{Liew2018,
title = {Missing Values Imputation using Similarity Matching Method for Brainprint Authentication},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.091044},
url = {http://dx.doi.org/10.14569/IJACSA.2018.091044},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {10},
author = {Siaw-Hong Liew and Yun-Huoy Choo and Yin Fen Low}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org