The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2018.091049
PDF

Improving Recommendation Techniques by Deep Learning and Large Scale Graph Partitioning

Author 1: Gourav Bathla
Author 2: Rinkle Rani
Author 3: Himanshu Aggarwal

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue 10, 2018.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Recommendation is very crucial technique for social networking sites and business organizations. It provides suggestions based on users’ personalized interest and provide users with movies, books and topics links that would be most suitable for them. It can improve user effectiveness and business revenue by approximately 30%, if analyzed in intelligent manner. Social recommendation systems for traditional datasets are already analyzed by researchers and practitioners in detail. Several researchers have improved recommendation accuracy and throughput by using various innovative approaches. Deep learning has been proven to provide significant improvements in image processing and object recognition. It is machine learning technique where hidden layers are used to improve outcome. In traditional recommendation techniques, sparsity and cold start are limitations which are due to less user-item interactions. This can be removed by using deep learning models which can improve user-item matrix entries by using feature learning. In this paper, various models are explained with their applications. Readers can identify best suitable model from these deep learning models for recommendation based on their needs and incorporate in their techniques. When these recommendation systems are deployed on large scale of data, accuracy degrades significantly. Social big graph is most suitable for large scale social data. Further improvements for recommendations are explained with the use of large scale graph partitioning. MAE (Mean Absolute Error) and RMSE (Root Mean Squared Error) are used as evaluation parameters which are used to prove better recommendation accuracy. Epinions, MovieLens and FilmTrust datasets are also shown as most commonly used datasets for recommendation purpose.

Keywords: Social big data; social recommendation; deep learning; graph partitioning; social trust

Gourav Bathla, Rinkle Rani and Himanshu Aggarwal, “Improving Recommendation Techniques by Deep Learning and Large Scale Graph Partitioning” International Journal of Advanced Computer Science and Applications(IJACSA), 9(10), 2018. http://dx.doi.org/10.14569/IJACSA.2018.091049

@article{Bathla2018,
title = {Improving Recommendation Techniques by Deep Learning and Large Scale Graph Partitioning},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.091049},
url = {http://dx.doi.org/10.14569/IJACSA.2018.091049},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {10},
author = {Gourav Bathla and Rinkle Rani and Himanshu Aggarwal}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org