The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2018.091057
PDF

A Real-Time Algorithm for Tracking Astray Pilgrim based on in-Memory Data Structures

Author 1: Mohammad A.R. Abdeen
Author 2: Ahmad Taleb

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue 10, 2018.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Large crowd management presents a significant challenge to organizers and for the success of the event and to achieve the set objectives. One of the biggest events and with largest crowd in the world is the Muslim pilgrimage to Mecca that happens every year and lasts for five years. The event hosts over two million people from over 80 countries across the world with men, women, and children of various age groups and many languages. One of the challenges that faces the authorities in Saudi Arabia is that many of the pilgrims become astray during the event due to the relative complexity of the rituals mainly mountainous landscape and the language barrier. This result in them being unable to perform the required rituals on the prescribed time(s) with the possibility to invalidate the whole pilgrimage and jeopardize their once-in-a-life journey. Last year over 20,000 pilgrims went astray during the pilgrimage season. In this paper we present a tracking algorithm to help track, alarm, and report astray pilgrims. The algorithm is implemented on a server that contains pilgrims’ data such as geolocations, time stamp and personal information such as name, age, gender, and nationality. Each pilgrim is equipped with a wearable device to report the geolocations and the timestamp to the centralized server. Pilgrims are organized in groups of 20 persons at maximum. By identifying the distance of the pilgrim to its group’s centroid and whether or not the pilgrim’s geolocation is where it is supposed to be according to the pilgrimage schedule, the algorithm determines if the pilgrim is astray or on a verge of becoming astray. Algorithm complexity analysis is performed. For better performance and shorter real-time time to determine the pilgrim’s status, the algorithm employs an in-memory data structure. The analysis showed that the time complexity is O(n). The algorithm has also been tested using simulation runs based on synthesized data that is randomly generated within a specified geographical zone and according to the pilgrimage plan. The simulation results showed good agreement with the analytical performance analysis.

Keywords: In-Memory structure; real-time; tracking algorithm for astray pilgrim; large crowd management

Mohammad A.R. Abdeen and Ahmad Taleb, “A Real-Time Algorithm for Tracking Astray Pilgrim based on in-Memory Data Structures” International Journal of Advanced Computer Science and Applications(IJACSA), 9(10), 2018. http://dx.doi.org/10.14569/IJACSA.2018.091057

@article{Abdeen2018,
title = {A Real-Time Algorithm for Tracking Astray Pilgrim based on in-Memory Data Structures},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.091057},
url = {http://dx.doi.org/10.14569/IJACSA.2018.091057},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {10},
author = {Mohammad A.R. Abdeen and Ahmad Taleb}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org