The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2018.0911106
PDF

Systematic Analysis and Classification of Cardiac Rate Variability using Artificial Neural Network

Author 1: Azizullah Kakar
Author 2: Naveed Sheikh
Author 3: Bilal Ahmed
Author 4: Saleem Iqbal

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue 11, 2018.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Electrocardiogram (ECG) is acquisition of electrical activity signals in cardiology. It contains important information about the condition and diseases of heart. An ECG wave, pattern, size, shape and the time interval between different peaks of P-QRS-T wave provide useful information about the diseases which afflict heart. Heart rate signals vary and this variation contains important indicators of cardiac diseases. To assess autonomic nervous system, heart rate variability is popular and non-invasive tool. These indicators contained in ECG wave appear all the day or occur randomly in the day. So, computer based information is much useful over day long interval to diagnose heart disease. Thus, this paper deals with classification of heart diseases on the basis of heart rate variability using artificial neural network. Feed forward neural network is considered to be almost correct 85% of the test results.

Keywords: Electrocardiogram (ECG), Cardiology, P-QRS-T wave, Autonomic nervous system, Heart rate variability, artificial neural network, Time and frequency domain, Pattern recognition, Diseases classification

Azizullah Kakar, Naveed Sheikh, Bilal Ahmed and Saleem Iqbal, “Systematic Analysis and Classification of Cardiac Rate Variability using Artificial Neural Network” International Journal of Advanced Computer Science and Applications(IJACSA), 9(11), 2018. http://dx.doi.org/10.14569/IJACSA.2018.0911106

@article{Kakar2018,
title = {Systematic Analysis and Classification of Cardiac Rate Variability using Artificial Neural Network},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.0911106},
url = {http://dx.doi.org/10.14569/IJACSA.2018.0911106},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {11},
author = {Azizullah Kakar and Naveed Sheikh and Bilal Ahmed and Saleem Iqbal}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org