The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2018.091113
PDF

Developing A Model for Predicting the Speech Intelligibility of South Korean Children with Cochlear Implantation using a Random Forest Algorithm

Author 1: Haewon Byeon

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue 11, 2018.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The random forest technique, a tree-based study model, predicts the results by using random decision trees based on the bootstrap technique. Therefore, it has a high prediction power and fewer errors, which are advantages of this method. This study aimed to provide baseline data regarding the language therapy after cochlear implantation by identifying the factors associated with the speech intelligibility of children with cochlear implantation. This study evaluating the factors associated with the articulation accuracy of children with cochlear implantation. This study targeted 82 hearing-impaired children, who lived in Seoul, Incheon, and Suwon areas, were between 4 and 8 years old, and had been worn cochlear implant at least one year and less than five years. Explanatory variables used in this study included gender, age, household income, the wear time of a cochlear implant, vocabulary index, and corrected hearing. Speech intelligibility was analyzed using the 'speech intelligibility test tool' composed of nine sentences. The predictive model for speech intelligibility of children with cochlear implants was developed using random forest. The major predictors of the articulation accuracy of children with cochlear implantation were the wear time of a cochlear implant, the time since cochlear implantation, vocabulary, household income, age, and gender, in the order of the magnitude. The final error rate of the random forest model developed by generating 500 bootstrap samples was 0.22, and the prediction rate was 78.8%. The results of this study on a prediction model suggested that it would be necessary to implement cochlear implantation and to develop a customized aural rehabilitation program considering the linguistic ability of a subject for enhancing the speech intelligibility of a child with cochlear implantation.

Keywords: Random forest; hearing impairment; vocabulary index; speech intelligibility; risk factor; data mining

Haewon Byeon, “Developing A Model for Predicting the Speech Intelligibility of South Korean Children with Cochlear Implantation using a Random Forest Algorithm” International Journal of Advanced Computer Science and Applications(IJACSA), 9(11), 2018. http://dx.doi.org/10.14569/IJACSA.2018.091113

@article{Byeon2018,
title = {Developing A Model for Predicting the Speech Intelligibility of South Korean Children with Cochlear Implantation using a Random Forest Algorithm},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.091113},
url = {http://dx.doi.org/10.14569/IJACSA.2018.091113},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {11},
author = {Haewon Byeon}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Computer Vision Conference
  • Healthcare Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org