The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Call for Papers
  • Proposals
  • Guest Editors

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Brain Signal Classification using Genetic Algorithm for Right-Left Motion Pattern

Author 1: Cahya Rahmad
Author 2: Rudy Ariyanto
Author 3: Dika Rizky Yunianto

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2018.091134

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue 11, 2018.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Brain signals or EEG are non-stationary signals and are difficult to analyze visually. The brain signal has five waves alpha, beta, delta, gamma, and theta. The five waves have their frequency to describe the level of attention, alertness, character and external stimuli. The five waves can be used to analyze stimulation patterns when turning left and right. Giving weight to the five brain waves utilizes genetic algorithms to get one signal. Genetic algorithms can be used to find the best signal for classification. In this paper, the EEG signal will be classified to determine the right or left movement pattern. After combining the five brain waves with genetic algorithms is then classified using the Logistic Regression, Linear Discriminant Analysis, K-Neighbors Classifier, Decision Tree, Naïve Bayes Gaussian, and Support Vector Machine. From the six methods above that have the highest accuracy is 56% and SVM is a method that has better accuracy than others on this problem.

Keywords: Brain wave; EEG; genetic algorithm; classification; left right movement

Cahya Rahmad, Rudy Ariyanto and Dika Rizky Yunianto, “Brain Signal Classification using Genetic Algorithm for Right-Left Motion Pattern” International Journal of Advanced Computer Science and Applications(IJACSA), 9(11), 2018. http://dx.doi.org/10.14569/IJACSA.2018.091134

@article{Rahmad2018,
title = {Brain Signal Classification using Genetic Algorithm for Right-Left Motion Pattern},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.091134},
url = {http://dx.doi.org/10.14569/IJACSA.2018.091134},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {11},
author = {Cahya Rahmad and Rudy Ariyanto and Dika Rizky Yunianto}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Hybrid | San Francisco

Computing Conference 2023

13-14 July 2023

  • Hybrid | London, UK

IntelliSys 2022

1-2 September 2022

  • Hybrid / Amsterdam

Future Technologies Conference (FTC) 2022

20-21 October 2022

  • Hybrid / Vancouver
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org