The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2018.091135
PDF

Amharic based Knowledge-Based System for Diagnosis and Treatment of Chronic Kidney Disease using Machine Learning

Author 1: Siraj Mohammed
Author 2: Tibebe Beshah

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue 11, 2018.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Chronic kidney disease is an important challenge for health systems around the world and consuming a huge proportion of health care finances. Around 85% of the world populations live in developing country of the world, where chronic kidney disease prevention programs are undeveloped. Treatment options for chronic kidney disease are not readily available for most countries in sub-Saharan Africa including Ethiopia. Many rural and urban communities in Ethiopia have extremely limited access to medical advice where medical experts are not readily available. To address such a problem, a medical knowledge-based system can play a significant role. Therefore, the aim of this research was developing a self- learning knowledge based system for diagnosis and treatment of the first three stages of kidney disease that can update the knowledge without the involvement of knowledge engineer. In the development of this system, the following procedures are followed: Knowledge Engineering research design was used to develop the prototype system. Purposive sampling strategies were utilized to choose specialists. The information was acquired by using both structured and unstructured interviews and all knowledge’s are represented by using production rule. The represented production rule was modeled by using decision tree modeling approach. Implementation was employed by using pro-log tools. Testing and evolution was performed through test case and user acceptance methods. Finally, we extensively evaluate the prototype system through visual interactions and test cases. Finally, the results show that our approach is better than the current ones.

Keywords: Knowledge-based system; kidney diseases; machine learning; knowledge engineering; knowledge representation

Siraj Mohammed and Tibebe Beshah, “Amharic based Knowledge-Based System for Diagnosis and Treatment of Chronic Kidney Disease using Machine Learning” International Journal of Advanced Computer Science and Applications(IJACSA), 9(11), 2018. http://dx.doi.org/10.14569/IJACSA.2018.091135

@article{Mohammed2018,
title = {Amharic based Knowledge-Based System for Diagnosis and Treatment of Chronic Kidney Disease using Machine Learning},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.091135},
url = {http://dx.doi.org/10.14569/IJACSA.2018.091135},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {11},
author = {Siraj Mohammed and Tibebe Beshah}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org