The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2018.091142
PDF

A Novel Student Risk Identification Model using Machine Learning Approach

Author 1: Nityashree Nadar
Author 2: Dr.R.Kamatchi

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue 11, 2018.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: This research work aim at addressing issues in detecting student, who are at risk of failing to complete their course. The conceptual design presents a solution for efficient learning in non-existence of data from previous courses, which are generally used for training state-of-art machine learning (ML) based model. The expected scenarios usually occurs in scenario when university introduces new courses for academics. For addressing this work, build a novel learning model that builds a ML from data constructed from present course. The proposed model uses data about already submitted task, which further induces the issues of imbalanced data for both training and testing the classification model. The contribution of the proposed model are: the design of training the learning model for detecting risk student utilizing information from present courses, tackling challenges of imbalanced data which is present in both training and testing data, defining the issues as a classification task, and lastly, developing a novel non-linear support vector machine (NL-SVM) classification model. Experiment outcome shows proposed model attain significant outcome when compared with state-of-art model.

Keywords: Classification; imbalanced data; machine learning; virtual learning environment

Nityashree Nadar and Dr.R.Kamatchi, “A Novel Student Risk Identification Model using Machine Learning Approach” International Journal of Advanced Computer Science and Applications(IJACSA), 9(11), 2018. http://dx.doi.org/10.14569/IJACSA.2018.091142

@article{Nadar2018,
title = {A Novel Student Risk Identification Model using Machine Learning Approach},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.091142},
url = {http://dx.doi.org/10.14569/IJACSA.2018.091142},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {11},
author = {Nityashree Nadar and Dr.R.Kamatchi}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Computer Vision Conference
  • Healthcare Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org