The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Indexing
  • Submit your Paper
  • Guidelines
  • Fees
  • Current Issue
  • Archives
  • Editors
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2018.091150

Evaluation of Gated Recurrent Unit in Arabic Diacritization

Author 1: Rajae Moumen
Author 2: Raddouane Chiheb
Author 3: Rdouan Faizi
Author 4: Abdellatif El Afia

PDF

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue 11, 2018.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Recurrent neural networks are powerful tools giving excellent results in various tasks, including Natural Language Processing tasks. In this paper, we use Gated Recurrent Unit, a recurrent neural network implementing a simple gating mechanism in order to improve the diacritization process of Arabic. Evaluation of Gated Recurrent Unit for diacritization is performed in comparison with the state-of-the art results obtained with Long-Short term memory a powerful RNN architecture giving the best-known results in diacritization. Evaluation covers two performance aspects, Error rate and training runtime.

Keywords: Gated recurrent unit; long-short term memory; arabic diacritization

Rajae Moumen, Raddouane Chiheb, Rdouan Faizi and Abdellatif El Afia, “Evaluation of Gated Recurrent Unit in Arabic Diacritization” International Journal of Advanced Computer Science and Applications(IJACSA), 9(11), 2018. http://dx.doi.org/10.14569/IJACSA.2018.091150

@article{Moumen2018,
title = {Evaluation of Gated Recurrent Unit in Arabic Diacritization},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.091150},
url = {http://dx.doi.org/10.14569/IJACSA.2018.091150},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {11},
author = {Rajae Moumen and Raddouane Chiheb and Rdouan Faizi and Abdellatif El Afia}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2024

4-5 April 2024

  • Berlin, Germany

Computing Conference 2024

11-12 July 2024

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org