The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2018.091181
PDF

Improving K-Means Algorithm by Grid-Density Clustering for Distributed WSN Data Stream

Author 1: Yassmeen Alghamdi
Author 2: Manal Abdullah

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue 11, 2018.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: At recent years, Wireless Sensor Networks (WSNs) had a widespread range of applications in many fields related to military surveillance, monitoring health, observing habitat and so on. WSNs contain individual nodes that interact with the environment by sensing and processing physical parameters. Sometimes, sensor nodes generate a big amount of sequential tuple-oriented and small data that is called Data Streams. Data streams usually are huge data that arrive online, flowing rapidly in a very high speed, unlimited and can’t be controlled orderly during arrival. Due to WSN limitations, some challenges are faced and need to be solved. Extending network lifetime and reducing energy consumption are main challenges that could be solved by Data Mining techniques. Clustering is a common data mining technique that effectively organizes WSNs structure. It has proven its efficiency on network performance by extending network lifetime and saving energy of sensor nodes. This paper develops a grid-density clustering algorithm that enhances clustering in WSNs by combining grid and density techniques. The algorithm helps to face limitations found in WSNs that carry data streams. Grid-density algorithm is proposed based on the well-Known K-Means clustering algorithm to enhance it. By using Matlab, the grid-density clustering algorithm is compared with K-Means algorithm. The simulation results prove that the grid-density algorithm outperforms K-Means by 15% in network lifetime and by 13% in energy consumption.

Keywords: WSNs; data mining; clustering; data stream; grid density

Yassmeen Alghamdi and Manal Abdullah, “Improving K-Means Algorithm by Grid-Density Clustering for Distributed WSN Data Stream” International Journal of Advanced Computer Science and Applications(IJACSA), 9(11), 2018. http://dx.doi.org/10.14569/IJACSA.2018.091181

@article{Alghamdi2018,
title = {Improving K-Means Algorithm by Grid-Density Clustering for Distributed WSN Data Stream},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.091181},
url = {http://dx.doi.org/10.14569/IJACSA.2018.091181},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {11},
author = {Yassmeen Alghamdi and Manal Abdullah}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org