The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Abnormal Region Extraction from MR Brain Images using Hybrid Approach

Author 1: Nikhil Gala
Author 2: Kamalakar Desai

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2018.091230

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue 12, 2018.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Automatic brain abnormality segmentation from magnetic resonance images is a key task that is performed by computer aided algorithm or manual extraction by a medical expert. The regions are often partitioned based on the similarities of intensities that persist in a particular region. MR brain image segmentation is a critical step that helps to identify the abnormal region. Accurate identification of this abnormal region helps the radiologist and surgeons in surgical process and research. Through this paper we present a hybrid approach of algorithms based on clustering approach like region and edge based algorithm involved in segmenting abnormal region from MR brain images. The method is an integration of region based (pillar K-means) and edge based (level set) segmentation algorithm that aims to segment the abnormal region precisely. Experimental results show that the proposed approach could attain segmentation efficiency of 89.2%, mitigating the segmentation errors that were prevalent with region or edge based algorithms.

Keywords: Clustering algorithm; hybrid approach; MR brain image segmentation; level set; pillar k-means; segmentation errors

Nikhil Gala and Kamalakar Desai, “Abnormal Region Extraction from MR Brain Images using Hybrid Approach” International Journal of Advanced Computer Science and Applications(IJACSA), 9(12), 2018. http://dx.doi.org/10.14569/IJACSA.2018.091230

@article{Gala2018,
title = {Abnormal Region Extraction from MR Brain Images using Hybrid Approach},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.091230},
url = {http://dx.doi.org/10.14569/IJACSA.2018.091230},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {12},
author = {Nikhil Gala and Kamalakar Desai}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org