The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2018.091231
PDF

Linear Intensity-Based Image Registration

Author 1: Yasmin Mumtaz Ahmad
Author 2: Shahnorbanun Sahran
Author 3: Afzan Adam
Author 4: Syazarina Sharis Osman

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue 12, 2018.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The accurate detection and localization of lesion within the prostate could greatly benefit in the planning of surgery and radiation therapy. Although T2 Weighted Imaging (T2WI) Magnetic Resonance Imaging (MRI) provides an infinite amount of anatomical information, which ease and improve diagnosis and patient treatment, however, modality specific image artifacts, such as the occurrences of intensity inhomogeneity are still obvious and can adversely affect quantitative image analysis. Conventional high resolution T2WI has been restricted in this respect. On the contrary, Apparent Diffusion Coefficient (ADC) map has been seen as capable to tackle T2WI limitation when a functional assessment of the prostate capable to provide added value compared to T2WI alone. Likewise, it has been shown that diagnosis using ADC map combined with T2WI significantly outperforms T2WI alone. Therefore, to obtain high accuracy detection and localization, a combination of high-resolution anatomic and functional imaging is extremely important in clinical practice. This strategy relies on accurate intensity based image registration. However, registration of anatomical and functional MR imaging is really challenging due to missing correspondences and intensity inhomogeneity. To address this problem, this study researches the used of applying linear geometric transform to the corresponding point to accurately mapping the images for precise alignment and accurate detection. Transformation type is crucial for the success of image registration. The selection of transformation type is influenced by the type and severity of the geometric differences between corresponding images, the accuracy of the control point between images, its density and organization of the control points. A transformation type is selected to reflect geometric differences between two images in image registration. Often, the selection of the suitable transformation type for image registration is undeniably challenging. To make this selection as effective as possible, an experimental mechanism has to be carried out to determine its suitability. These transformations types are Affine, similarity, rigid and translation. Additionally, intensity based image registration is implemented to optimize the similarity metric mean square error through regular step gradient descent optimizer. Accuracies evaluation for each transformation type has been carried out through mean square error (MSE) and peak signal noise ratio (PSNR). The results have been presented in a chart form together with a comparison table.

Keywords: Lineargeo metric transformation; image registration; point correspondence

Yasmin Mumtaz Ahmad, Shahnorbanun Sahran, Afzan Adam and Syazarina Sharis Osman, “Linear Intensity-Based Image Registration” International Journal of Advanced Computer Science and Applications(IJACSA), 9(12), 2018. http://dx.doi.org/10.14569/IJACSA.2018.091231

@article{Ahmad2018,
title = {Linear Intensity-Based Image Registration},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.091231},
url = {http://dx.doi.org/10.14569/IJACSA.2018.091231},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {12},
author = {Yasmin Mumtaz Ahmad and Shahnorbanun Sahran and Afzan Adam and Syazarina Sharis Osman}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org