The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Morphological Features Analysis for Erythrocyte Classification in IDA and Thalassemia

Author 1: Izyani Ahmad
Author 2: Siti Norul Huda Sheikh Abdullah
Author 3: Raja Zahratul Azma Raja Sabudin

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2018.091240

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue 12, 2018.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Iron Deficiency Anemia (IDA) and Thalassemia is a common disease in the world population. In hospital routine, those diseases are being recognized based on level of hemoglobin in Complete Blood Count (CBC) result. Then, visual experts will conduct examination under the light microscope which is subjected to human error. In this research, we suggested a methodology via machine learning to classify and characterize erythrocyte related with IDA and Thalassemia. We employ some image pre-processing techniques on the blood smear images to enhance edges and reduce image noise such as gamma correction and morphological processing. Then, every single erythrocyte image will segment the background and foreground by using Otsu’s threshold method. Here, we have considered nine types of erythrocyte such as teardrop, echinocyte, elliptocyte, microcytic, hypochromic, target cell, acanthocyte, sickle cell and normal cell to be classified and portray based on their morphological features. Later, these 24 and 31 features from Hue’s moment, Zernike moment, Fourier descriptor and geometrical features are confirmed as potential features for each condition by calculating one-way ANOVA. Next, the rank of subset features is done based on their information gain value from maximum to minimum. Each of subset is separated by incremental of five features. Here, we compare the performance for each subset with five selected classifiers namely logistic regression, radial basis function network, multilayer perceptron, Naïve Bayes Classifier and Classification and Regression Tree. The best subsets from 31 features provide the highest result of classification with 83.5% accuracy, 83.5% sensitivity and 83.3% positive predictive value respectively via logistic regression compared to other classifiers. This study could be extended by using image dataset from other blood based disease for future work.

Keywords: (Iron Deficiency Anemia) IDA; Thalassemia; erythrocyte; morphological features; classifier; information gain; logistic regression

Izyani Ahmad, Siti Norul Huda Sheikh Abdullah and Raja Zahratul Azma Raja Sabudin, “Morphological Features Analysis for Erythrocyte Classification in IDA and Thalassemia” International Journal of Advanced Computer Science and Applications(IJACSA), 9(12), 2018. http://dx.doi.org/10.14569/IJACSA.2018.091240

@article{Ahmad2018,
title = {Morphological Features Analysis for Erythrocyte Classification in IDA and Thalassemia},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.091240},
url = {http://dx.doi.org/10.14569/IJACSA.2018.091240},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {12},
author = {Izyani Ahmad and Siti Norul Huda Sheikh Abdullah and Raja Zahratul Azma Raja Sabudin}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org