The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

A Schedule Optimization of Ant Colony Optimization to Arrange Scheduling Process at Certainty Variables

Author 1: Rangga Sidik
Author 2: Mia Fitriawati
Author 3: Syahrul Mauluddin
Author 4: A.Nursikuwagus

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2018.091246

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue 12, 2018.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: This research aims to get optimal collision of schedule by using certainty variables. Courses scheduling is conducted by ant colony algorithm. Setting parameters for intensity is bigger than 0, visibility track is bigger than 0, and evaporation of ant track is 0.03. Variables are used such as a number of lecturers, courses, classes, timeslot and time. Performance of ant colony algorithms is measured by how many schedules same time and class collided. Based on executions, with a total of 175 schedules, the average of a cycle is 9 cycles (exactly is 9.2 cycles) and an average of time process is 29.98 seconds. Scheduling, in nine experiments, has an average of time process of 19.99 seconds. Performance of ant colony algorithm is given scheduling process more efficient and predicted schedule collision.

Keywords: Ant colony; optimization; scheduling; process; certainty variables

Rangga Sidik, Mia Fitriawati, Syahrul Mauluddin and A.Nursikuwagus, “A Schedule Optimization of Ant Colony Optimization to Arrange Scheduling Process at Certainty Variables ” International Journal of Advanced Computer Science and Applications(IJACSA), 9(12), 2018. http://dx.doi.org/10.14569/IJACSA.2018.091246

@article{Sidik2018,
title = {A Schedule Optimization of Ant Colony Optimization to Arrange Scheduling Process at Certainty Variables },
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.091246},
url = {http://dx.doi.org/10.14569/IJACSA.2018.091246},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {12},
author = {Rangga Sidik and Mia Fitriawati and Syahrul Mauluddin and A.Nursikuwagus}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org