The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2018.090213
PDF

Long-Term Weather Elements Prediction in Jordan using Adaptive Neuro-Fuzzy Inference System (ANFIS) with GIS Techniques

Author 1: Omar Suleiman Arabeyyat

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue 2, 2018.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Weather elements are the most important parameters in metrological and hydrological studies especially in semi-arid regions, like Jordan. The Adaptive Neuro-Fuzzy Inference System (ANFIS) is used here to predict the minimum and maximum temperature of rainfall for the next 10 years using 30 years’ time series data for the period from 1985 to 2015. Several models were used based on different membership functions, different methods of optimization, and different dataset ratios for training and testing. By combining a neural network with a fuzzy system, the hybrid intelligent system results in a hybrid Neuro-Fuzzy system which is an approach that is good enough to simulate and predict rainfall events from long-term metrological data. In this study, the correlation coefficient and the mean square error were used to test the performance of the used model. ANFIS has successfully been used here to predict the minimum and maximum temperature of rainfall for the coming next 10 years and the results show a good consistence pattern compared to previous studies. The results showed a decrease in the annual average rainfall amounts in the next 10 years. The minimum average annual temperature showed the disappearance of a certain predicted zone by ANFIS when compared to actual data for the period 1985-2015, and the same results behavior has been noticed for the average annual maximum.

Keywords: Rainfall prediction; hybrid intelligent system; Adaptive Neuro-Fuzzy Inference System (ANFIS), GIS; time series prediction; long-term weather forecasting; climate change

Omar Suleiman Arabeyyat, “Long-Term Weather Elements Prediction in Jordan using Adaptive Neuro-Fuzzy Inference System (ANFIS) with GIS Techniques” International Journal of Advanced Computer Science and Applications(IJACSA), 9(2), 2018. http://dx.doi.org/10.14569/IJACSA.2018.090213

@article{Arabeyyat2018,
title = {Long-Term Weather Elements Prediction in Jordan using Adaptive Neuro-Fuzzy Inference System (ANFIS) with GIS Techniques},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.090213},
url = {http://dx.doi.org/10.14569/IJACSA.2018.090213},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {2},
author = {Omar Suleiman Arabeyyat}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org