The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2018.090223
PDF

Development and Validation of a Cooling Load Prediction Model

Author 1: Abir Khabthani
Author 2: Leila Châabane

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue 2, 2018.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In smart buildings, cooling load prediction is important and essential in the sense of energy efficiency especially in hot countries. Indeed, prediction is required in order to provide the occupant by his consumption and incite him to take right decisions that would potentially decrease his energy demand. In some existing models, prediction is based on a selected reference day. This selection depends on several conditions similarity. Such model needs deep analysis of big past data. Instead of a deep study to well select the reference day; this paper is focusing on a short sampling-rate for predicting the next state. So, this method requires less inputs and less stored data. Prediction results will be more close to the real state. In first phase, an hourly cooling load model is implemented. This model has as input current cooling load, current outside temperature and weather forecast to predict the next hour cooling consumption. To enhance model’s performance and reliability, the sampling period is decreasing to 30 minutes with respect to system dynamic. Lastly, prediction’s accuracy is improved by using previous errors between actual cooling load and prediction results. Simulations are realized in nodes located at a campus showing good adequacy with measurements.

Keywords: Smart building; energy efficiency; prediction; short sampling-rate; less stored data

Abir Khabthani and Leila Châabane, “Development and Validation of a Cooling Load Prediction Model” International Journal of Advanced Computer Science and Applications(IJACSA), 9(2), 2018. http://dx.doi.org/10.14569/IJACSA.2018.090223

@article{Khabthani2018,
title = {Development and Validation of a Cooling Load Prediction Model},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.090223},
url = {http://dx.doi.org/10.14569/IJACSA.2018.090223},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {2},
author = {Abir Khabthani and Leila Châabane}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org