The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2018.090244
PDF

Efficiency and Performance Analysis of a Sparse and Powerful Second Order SVM Based on LP and QP

Author 1: Rezaul Karim
Author 2: Amit Kumar Kundu

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue 2, 2018.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Productivity analysis is done on the new algorithm “Second Order Support Vector Machine (SOSVM)”, which could be thought as an offshoot of the popular SVM and based on its conventional QP version as well as the LP one. Our main goal is to produce a machine which is: 1) sparse & efficient; 2) powerful (kernel based) but not overfitted; 3) easily realizable. Experiments on benchmark data shows that to classify a new pattern, the proposed machine, SOSVM requires samples up to as little as 2.7% of original data set or 4.8% of conventional QP SVM or 48.3% of Vapnik’s LP SVM, which is already sparse. Despite this heavy test cost reduction, its classification accuracy is very similar to the most powerful QP SVM while being very simple to be produced. Moreover, two new terms called “Generalization Failure Rate (GFR)” and “Machine-Accuracy-Cost (MAC)” are defined to measure generalization-deficiency and accuracy-cost of a detector, respectively and used to compare such among different machines. Results show that our machine possesses GFR up to as little as 1.4% of the QP SVM or 1.5% of Vapnik’s LP SVM and MAC up to as little as 2.6% of the QP SVM or 35.9% of the Vapnik’s sparse LP SVM. Finally, having only two types of parameters to tune, this machine is straight forward and cheaper to be produced compared to the most popular & state-of-the-art machines in this direction. These collectively fulfill the three key goals that the machine is built for.

Keywords: Generalization failure rate; Kernel machine; LP; QP; machine accuracy cost; Second Order Support Vector Machine; sparse

Rezaul Karim and Amit Kumar Kundu, “Efficiency and Performance Analysis of a Sparse and Powerful Second Order SVM Based on LP and QP” International Journal of Advanced Computer Science and Applications(IJACSA), 9(2), 2018. http://dx.doi.org/10.14569/IJACSA.2018.090244

@article{Karim2018,
title = {Efficiency and Performance Analysis of a Sparse and Powerful Second Order SVM Based on LP and QP},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.090244},
url = {http://dx.doi.org/10.14569/IJACSA.2018.090244},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {2},
author = {Rezaul Karim and Amit Kumar Kundu}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org