The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2018.090310
PDF

Breast Cancer Classification in Histopathological Images using Convolutional Neural Network

Author 1: Mohamad Mahmoud Al Rahhal

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue 3, 2018.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Computer based analysis is one of the suggested means that can assist oncologists in the detection and diagnosis of breast cancer. On the other hand, deep learning has been promoted as one of the hottest research directions very recently in the general imaging literature, thanks to its high capability in detection and recognition tasks. Yet, it has not been adequately suited to the problem of breast cancer so far. In this context, I propose in this paper an approach for breast cancer detection and classification in histopathological images. This approach relies on a deep convolutional neural networks (CNN), which is pretrained on an auxiliary domain with very large labelled images, and coupled with an additional network composed of fully connected layers. The network is trained separately with respect to various image magnifications (40x, 100x, 200x and 400x). The results presented in the patient level achieved promising scores compared to the state of the art methods.

Keywords: Convolutional neural network (CNN); histopathological images; imagenet; classification

Mohamad Mahmoud Al Rahhal, “Breast Cancer Classification in Histopathological Images using Convolutional Neural Network” International Journal of Advanced Computer Science and Applications(IJACSA), 9(3), 2018. http://dx.doi.org/10.14569/IJACSA.2018.090310

@article{Rahhal2018,
title = {Breast Cancer Classification in Histopathological Images using Convolutional Neural Network},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.090310},
url = {http://dx.doi.org/10.14569/IJACSA.2018.090310},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {3},
author = {Mohamad Mahmoud Al Rahhal}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org