The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2018.090306
PDF

Online Estimation of Wind Turbine Tip Speed Ratio by Adaptive Neuro-Fuzzy Algorithm

Author 1: Aamer Bilal Asghar
Author 2: Xiaodong Liu

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue 3, 2018.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The efficiency of a wind turbine highly depends on the value of tip speed ratio during its operation. The power coefficient of a wind turbine varies with tip speed ratio. For maximum power extraction, it is very important to hold the tip speed ratio at optimum value and operate the variable-speed wind turbine at its maximum power coefficient. In this paper, an intelligent learning based adaptive neuro-fuzzy inference system (ANFIS) is proposed for online estimation of tip speed ratio (TSR) as a function of wind speed and rotor speed. The system is developed by assigning fuzzy membership functions (MFs) to the input-output variables and artificial neural network (ANN) is applied to train the system using back propagation gradient descent algorithm and least square method. During the training process, the ANN adjusts the shape of MFs by analyzing training data set and automatically generates the decision making fuzzy rules. The simulations are done in MATLAB for standard offshore 5 MW baseline wind turbine developed by national renewable energy laboratory (NREL). The performance of proposed neuro-fuzzy algorithm is compared with conventional multilayer perceptron feed-forward neural network (MLPFFNN). The results show the effectiveness of proposed model. The proposed system is more reliable for accurate estimation of tip speed ratio.

Keywords: Wind speed; rotor speed; power coefficient; tip speed ratio; ANFIS

Aamer Bilal Asghar and Xiaodong Liu, “Online Estimation of Wind Turbine Tip Speed Ratio by Adaptive Neuro-Fuzzy Algorithm” International Journal of Advanced Computer Science and Applications(IJACSA), 9(3), 2018. http://dx.doi.org/10.14569/IJACSA.2018.090306

@article{Asghar2018,
title = {Online Estimation of Wind Turbine Tip Speed Ratio by Adaptive Neuro-Fuzzy Algorithm},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.090306},
url = {http://dx.doi.org/10.14569/IJACSA.2018.090306},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {3},
author = {Aamer Bilal Asghar and Xiaodong Liu}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org