The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2018.090341
PDF

Evolutionary Design of a Carbon Dioxide Emission Prediction Model using Genetic Programming

Author 1: Abdel Karim Baareh

International Journal of Advanced Computer Science and Applications(ijacsa), Volume 9 Issue 3, 2018.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Weather pollution is considered as one of the most important, dangerous problem that affects our life and the society security from the different sides. The global warming problem affecting the atmosphere is related to the carbon dioxide emission (CO2) from the different fossil fuels along with temperature. In this paper, this phenomenon is studied to find a solution for preventing and reducing the poison CO2 gas emerged from affecting the society and reducing the smoke pollution. The developed model consists of four input attributes: the global oil, natural gas, coal, and primary energy consumption and one output the CO2 gas. The stochastic search algorithm Genetic Programming (GP) was used as an effective and robust tool in building the forecasting model. The model data for both training and testing cases were taken from the years of 1982 to 2000 and 2003 to 2010, respectively. According to the results obtained from the different evaluation criteria, it is nearly obvious that the performance of the GP in carbon gas emission estimation was very good and efficient in solving and dealing with the climate pollution problems.

Keywords: Fossil fuels; carbon emission; forecasting; genetic programming

Abdel Karim Baareh, “Evolutionary Design of a Carbon Dioxide Emission Prediction Model using Genetic Programming” International Journal of Advanced Computer Science and Applications(ijacsa), 9(3), 2018. http://dx.doi.org/10.14569/IJACSA.2018.090341

@article{Baareh2018,
title = {Evolutionary Design of a Carbon Dioxide Emission Prediction Model using Genetic Programming},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.090341},
url = {http://dx.doi.org/10.14569/IJACSA.2018.090341},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {3},
author = {Abdel Karim Baareh}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2025

28-29 April 2025

  • Berlin, Germany

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org