The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Indexing
  • Submit your Paper
  • Guidelines
  • Fees
  • Current Issue
  • Archives
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

SVM Optimization for Sentiment Analysis

Author 1: Munir Ahmad
Author 2: Shabib Aftab
Author 3: Muhammad Salman Bashir
Author 4: Noureen Hameed
Author 5: Iftikhar Ali
Author 6: Zahid Nawaz

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2018.090455

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue 4, 2018.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Exponential growth in mobile technology and mini computing devices has led to a massive increment in social media users, who are continuously posting their views and comments about certain products and services, which are in their use. These views and comments can be extremely beneficial for the companies which are interested to know about the public opinion regarding their offered products or services. This type of public opinion otherwise can be obtained via questionnaires and surveys, which is no doubt a difficult and complex task. So, the valuable information in the form of comments and posts from micro-blogging sites can be used by the companies to eliminate the flaws and to improve the products or services according to customer needs. However, extracting a general opinion out of a staggering number of users’ comments manually cannot be feasible. A solution to this is to use an automatic method for sentiment mining. Support Vector Machine (SVM) is one of the widely used classification techniques for polarity detection from textual data. This study proposes a technique to tune the SVM performance by using grid search method for sentiment analysis. In this paper, three datasets are used for the experiment and performance of proposed technique is evaluated using three information retrieval metrics: precision, recall and f-measure.

Keywords: Sentiment analysis; polarity detection; machine learning technique; support vector machine (SVM); optimized SVM; grid search technique

Munir Ahmad, Shabib Aftab, Muhammad Salman Bashir, Noureen Hameed, Iftikhar Ali and Zahid Nawaz, “SVM Optimization for Sentiment Analysis” International Journal of Advanced Computer Science and Applications(IJACSA), 9(4), 2018. http://dx.doi.org/10.14569/IJACSA.2018.090455

@article{Ahmad2018,
title = {SVM Optimization for Sentiment Analysis},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.090455},
url = {http://dx.doi.org/10.14569/IJACSA.2018.090455},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {4},
author = {Munir Ahmad and Shabib Aftab and Muhammad Salman Bashir and Noureen Hameed and Iftikhar Ali and Zahid Nawaz}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org