The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2018.090459
PDF

A Penalized-Likelihood Image Reconstruction Algorithm for Positron Emission Tomography Exploiting Root Image Size

Author 1: Munir Ahmad
Author 2: H. M. Tanveer
Author 3: Z.A. Shaikh
Author 4: Furkh Zeshan
Author 5: Usman Sharif Bajwa

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue 4, 2018.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Iterative image reconstruction methods are considered better as compared to the analytical reconstruction methods in terms of their noise characteristics and quantification ability. Penalized-Likelihood Expectation Maximization (PLEM) image reconstruction methods are able to incorporate prior information about the object being imaged and have flexibility to include various prior functions which are based on different image descriptions. Median Root Priors intrinsically take into account the salient image features, such as edges, which becomes smooth owing to quadratic priors. Generally, a 3*3 pixels neighborhood support or root image size is used to evaluate the median. We evaluate different root image sizes to observe their effect on the final reconstructed image. Our results show that at higher parameter values, root image size has pronounced effect on different image quality parameters evaluated such as reconstructed image bias as compared to the phantom image, contrast and resolution in the reconstructed object. Our results show that for the small-sized objects, small root image is better whereas for objects of diameter more than two to three times of the resolution of the reconstructed object, larger root image size is preferable in terms of reconstruction speed and image quality.

Keywords: Penalized-Likelihood expectation maximization; median root priors; maximum-likelihood expectation maximization; full-width-at-half-maximum

Munir Ahmad, H. M. Tanveer, Z.A. Shaikh, Furkh Zeshan and Usman Sharif Bajwa, “A Penalized-Likelihood Image Reconstruction Algorithm for Positron Emission Tomography Exploiting Root Image Size” International Journal of Advanced Computer Science and Applications(IJACSA), 9(4), 2018. http://dx.doi.org/10.14569/IJACSA.2018.090459

@article{Ahmad2018,
title = {A Penalized-Likelihood Image Reconstruction Algorithm for Positron Emission Tomography Exploiting Root Image Size},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.090459},
url = {http://dx.doi.org/10.14569/IJACSA.2018.090459},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {4},
author = {Munir Ahmad and H. M. Tanveer and Z.A. Shaikh and Furkh Zeshan and Usman Sharif Bajwa}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org