The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Call for Papers
  • Proposals
  • Guest Editors

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Hybrid Ensemble Framework for Heart Disease Detection and Prediction

Author 1: Elham Nikookar
Author 2: Ebrahim Naderi

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2018.090533

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue 5, 2018.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Data mining techniques have been widely used in clinical decision support systems for detection and prediction of various diseases. As heart disease is the leading cause of death for both men and women, detection and prediction of the heart disease is one of the most important issues in medical domain and many researchers developed intelligent medical decision support systems to improve the ability of the CAD systems in diagnosing heart disease. However, there are almost no studies investigating capabilities of hybrid ensemble methods in building a detection and prediction model for heart disease. In this work, we investigate the use of hybrid ensemble model in which a more reliable ensemble than basic ensemble models is proposed and leads to better performance than other heart disease prediction models. To evaluate the performance of proposed model, a dataset containing 278 samples from SPECT heart disease database is used that after applying the model on the data, 96% of classification accuracy, 80% of sensitivity and 93% of specificity are obtained that indicates acceptable performance of the proposed hybrid ensemble model in comparison with basic ensemble model as well as other state of the art models.

Keywords: Data mining; hybrid ensemble; base classifier; classification accuracy; sensitivity; specificity

Elham Nikookar and Ebrahim Naderi, “Hybrid Ensemble Framework for Heart Disease Detection and Prediction” International Journal of Advanced Computer Science and Applications(IJACSA), 9(5), 2018. http://dx.doi.org/10.14569/IJACSA.2018.090533

@article{Nikookar2018,
title = {Hybrid Ensemble Framework for Heart Disease Detection and Prediction},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.090533},
url = {http://dx.doi.org/10.14569/IJACSA.2018.090533},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {5},
author = {Elham Nikookar and Ebrahim Naderi}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Hybrid | San Francisco

Computing Conference 2023

13-14 July 2023

  • Hybrid | London, UK

IntelliSys 2022

1-2 September 2022

  • Hybrid / Amsterdam

Future Technologies Conference (FTC) 2022

20-21 October 2022

  • Hybrid / Vancouver
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org