The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2018.090540
PDF

Tuning of Customer Relationship Management (CRM) via Customer Experience Management (CEM) using Sentiment Analysis on Aspects Level

Author 1: Hamed AL-Rubaiee
Author 2: Khalid Alomar
Author 3: Renxi Qiu
Author 4: Dayou Li

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue 5, 2018.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: This study proposes a framework that combines a supervised machine learning and a semantic orientation approach to tune Customer Relationship Management (CRM) via Customer Experience Management (CEM). The framework extracts data from social media first and then integrates CRM and CEM by tuning and optimising CRM to reflect the needs and expectations of users on social media. In other words, in order to reduce the gap between the users’ predicted opinions in CRM and their opinions on social media, the existing data from CEM will be applied to determine the similar behavioural patterns of customers towards similar outcomes within CRM. CRM data and extracted data from social media will be consolidated by the unsupervised data mining method (association). The framework will lead to a quantitative approach to uncover relationships between the extracted data from social media and the CRM data. The results show that changing some aspects of the e-learning criteria that were required by students in their social media posts can help to enhance the classification accuracy in the learning management system (LMS) data and to understand more students’ studying statuses. Furthermore, the results show matching between students’ opinions in CRM and CEM, especially in the negative and neutral classes.

Keywords: Opinion mining; customer relationship management; customer experience management; sentiment analysis; Twitter

Hamed AL-Rubaiee, Khalid Alomar, Renxi Qiu and Dayou Li, “Tuning of Customer Relationship Management (CRM) via Customer Experience Management (CEM) using Sentiment Analysis on Aspects Level” International Journal of Advanced Computer Science and Applications(IJACSA), 9(5), 2018. http://dx.doi.org/10.14569/IJACSA.2018.090540

@article{AL-Rubaiee2018,
title = {Tuning of Customer Relationship Management (CRM) via Customer Experience Management (CEM) using Sentiment Analysis on Aspects Level},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.090540},
url = {http://dx.doi.org/10.14569/IJACSA.2018.090540},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {5},
author = {Hamed AL-Rubaiee and Khalid Alomar and Renxi Qiu and Dayou Li}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org