The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2018.090542
PDF

Detection of Mass Panic using Internet of Things and Machine Learning

Author 1: Gehan Yahya Alsalat
Author 2: Mohammad El-Ramly
Author 3: Aly Aly Fahmy
Author 4: Karim Said

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue 5, 2018.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The increase of emergency situations that cause mass panic in mass gatherings, such as terrorist attacks, random shooting, stampede, and fires, sheds light on the fact that advancements in technology should contribute in timely detecting and reporting serious crowd abnormal behaviour. The new paradigm of the ‘Internet of Things’ (IoT) can contribute to that. In this study, a method for real-time detection of abnormal crowd behaviour in mass gatherings is proposed. This system is based on advanced wireless connections, wearable sensors and machine learning technologies. It is a new crowdsourcing approach that considers humans themselves as the surveillance devices that exist everywhere. A sufficient number of the event’s attendees are supposed to wear an electronic wristband which contains a heart rate sensor, motion sensors and an assisted-GPS, and has a wireless connection. It detects the abnormal behaviour by detecting heart rate increase and abnormal motion. Due to the unavailability of public bio-dataset on mass panic, dataset of this study was collected from 89 subjects wearing the above-mentioned wristband and generating 1054 data samples. Two types of data collected were: firstly, the data of normal daily activities and secondly, the data of abnormal activities resembling the behaviour of escape panic. Moreover, another abnormal dataset was synthetically generated to simulate panic with limited motion. In our proposed approach, two-phases of data analysis are done. Phase-I is a deep machine learning model that was used to analyze the sensors’ collected readings of the wristband and detect if the person has indeed panicked in order to send alerting signals. While phase-II data analysis takes place in the monitoring server that receives the alerting signals to conclude if it is a mass panic incident or a false positive case. Our experiments demonstrate that the proposed system can offer a reliable, accurate, and fast solution for panic detection. This experiment uses the Hajj pilgrimage as a case study.

Keywords: Internet of Things; IoT; Mobile Crowd Sensing (MCS); wearables; mass panic; mass gatherings; accelerometer; Optical Heart Rate (HR) sensor; abnormal crowd behaviour; deep learning; Recurrent Neural Network (RNN); Long Short Term Memory (LSTM); Gated Recurrent Unit (GRU); time series

Gehan Yahya Alsalat, Mohammad El-Ramly, Aly Aly Fahmy and Karim Said, “Detection of Mass Panic using Internet of Things and Machine Learning” International Journal of Advanced Computer Science and Applications(IJACSA), 9(5), 2018. http://dx.doi.org/10.14569/IJACSA.2018.090542

@article{Alsalat2018,
title = {Detection of Mass Panic using Internet of Things and Machine Learning},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.090542},
url = {http://dx.doi.org/10.14569/IJACSA.2018.090542},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {5},
author = {Gehan Yahya Alsalat and Mohammad El-Ramly and Aly Aly Fahmy and Karim Said}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org