The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2018.090543
PDF

Motif Detection in Cellular Tumor p53 Antigen Protein Sequences by using Bioinformatics Big Data Analytical Techniques

Author 1: Tariq Ali
Author 2: Sana Yasin
Author 3: Umar Draz
Author 4: M. Ayaz Arshad
Author 5: Tayyaba Tariq
Author 6: Sarah Javaid

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue 5, 2018.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Due to the rapid growth of data in the field of big data and bioinformatics, the analysis and management of the data is a very difficult task for the scientist and the researchers. Data exists in many formats like in the form of groups and clusters. The data that exist in the group form and have some repetition patterns called Motifs. A lot of tools and techniques are available in the literature to detect the motifs in different fields like neural networks, antigen/antibody protein, metabolic pathways, DNA/RNA sequences and Protein-Protein Interactions (PPI). In this paper, motif detection is done in tumor antigen protein, namely, cellular tumor antigen p53 (Guardian of the protein and genome) that regulate the cell cycle and suppress the tumor growth in the human body. As tumor is a death causing disease and creates a lot of other diseases in human beings like brain stroke, brain hemorrhage, etc. So there needs to investigate the relation of the tumor protein that prevents the human from not only brain tumor but also from a lot of other diseases that is created from it. To find out the gap between the motifs in the tumor antigen the GLAM2 is used that detects the distance between the motifs very efficiently. Same tumor antigen protein is evaluated at different tools like MEME, TOMTOM, Motif Finder and DREME to analyze the results critically. As tumor protein exists in multiple species, so comparison of homo tumor antigen protein is also done in different species to check the diversity level of this protein. Our purposed approach gives better results and less computational time than other approaches for different types of user characteristics.

Keywords: Bio-informatics; motif detection; guardian protein Tp53; DNA; tumor antigen; cancer; un-gapped motifs; MEME

Tariq Ali, Sana Yasin, Umar Draz, M. Ayaz Arshad, Tayyaba Tariq and Sarah Javaid, “Motif Detection in Cellular Tumor p53 Antigen Protein Sequences by using Bioinformatics Big Data Analytical Techniques” International Journal of Advanced Computer Science and Applications(IJACSA), 9(5), 2018. http://dx.doi.org/10.14569/IJACSA.2018.090543

@article{Ali2018,
title = {Motif Detection in Cellular Tumor p53 Antigen Protein Sequences by using Bioinformatics Big Data Analytical Techniques},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.090543},
url = {http://dx.doi.org/10.14569/IJACSA.2018.090543},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {5},
author = {Tariq Ali and Sana Yasin and Umar Draz and M. Ayaz Arshad and Tayyaba Tariq and Sarah Javaid}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org